تحصل سير على حدود بادية لمعامل الفوريه للأشكال المودولية على $SL_2(mathbb{Z})$ ل $p=2,3,5,7$. في هذا البحث، نمتد إلى نتيجة سير للأشكال المودولية الضعيفة النصف الوزنية على $Gamma_{0}(4N)$ ل $N=1,2,4$. ويستند الإثبات إلى العلاقات الخطية بين معاملات الفوريه للأشكال النصف الوزنية. كتطبيقات، نحصل على توافقات من الأسباب البورشردز، وتوافقات من كسور السلسلة الإيزنشتاين، وتوافقات من قيم الدوال $L$ في نقطة معينة. بالإضافة إلى ذلك، يتم الحصول على توافقات معاملات الفوريه للأشكال المودولية سيجل على الفضاء المااس باستخدام رفع إكيدا.
Serre obtained the p-adic limit of the integral Fourier coefficient of modular forms on $SL_2(mathbb{Z})$ for $p=2,3,5,7$. In this paper, we extend the result of Serre to weakly holomorphic modular forms of half integral weight on $Gamma_{0}(4N)$ for $N=1,2,4$. A proof is based on linear relations among Fourier coefficients of modular forms of half integral weight. As applications we obtain congruences of Borcherds exponents, congruences of quotient of Eisentein series and congruences of values of $L$-functions at a certain point are also studied. Furthermore, the congruences of the Fourier coefficients of Siegel modular forms on Maass Space are obtained using Ikeda lifting.
We establish an isomorphism between certain complex-valued and vector-valued modular form spaces of half-integral weight, generalizing the well-known isomorphism between modular forms for $Gamma_0(4)$ with Kohnens plus condition and modular forms for
We investigate non-vanishing properties of $L(f,s)$ on the real line, when $f$ is a Hecke eigenform of half-integral weight $k+{1over 2}$ on $Gamma_0(4).$
Let $F$ be a totally real field in which $p$ is unramified. We prove that, if a cuspidal overconvergent Hilbert cuspidal form has small slopes under $U_p$-operators, then it is classical. Our method follows the original cohomological approach of Cole
In this paper, we prove some divisibility results for the Fourier coefficients of reduced modular forms of sign vectors. More precisely, we generalize a divisibility result of Siegel on constant terms when the weight is non-positive, which is related
Let $lambda$ be an integer, and $f(z)=sum_{ngg-infty} a(n)q^n$ be a weakly holomorphic modular form of weight $lambda+frac 12$ on $Gamma_0(4)$ with integral coefficients. Let $ellgeq 5$ be a prime. Assume that the constant term $a(0)$ is not zero mod