ترغب بنشر مسار تعليمي؟ اضغط هنا

p-adic Cohomology and classicality of overconvergent Hilbert modular forms

214   0   0.0 ( 0 )
 نشر من قبل Liang Xiao
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $F$ be a totally real field in which $p$ is unramified. We prove that, if a cuspidal overconvergent Hilbert cuspidal form has small slopes under $U_p$-operators, then it is classical. Our method follows the original cohomological approach of Coleman. The key ingredient of the proof is giving an explicit description of the Goren-Oort stratification of the special fiber of the Hilbert modular variety. A byproduct of the proof is to show that, at least when $p$ is inert, of the rigid cohomology of the ordinary locus has the same image as the classical forms in the Grothendieck group of Hecke modules.



قيم البحث

اقرأ أيضاً

195 - Yichao Tian 2011
Let $F$ be a quadratic real field, $p$ be a rational prime inert in $F$. In this paper, we prove that an overconvergent $p$-adic Hilbert eigenform for $F$ of small slope is actually a classical Hilbert modular form.
193 - YoungJu Choie 2021
Generalizing a result of cite{Z1991, CPZ} about elliptic modular forms, we give a closed formula for the sum of all Hilbert Hecke eigenforms over a totally real number field with strict class number $1$, multiplied by their period polynomials, as a single product of the Kronecker series.
The aim of this paper is twofold. We first present a construction of overconvergent automorphic sheaves for Siegel modular forms by generalising the perfectoid method, originally introduced by Chojecki--Hansen--Johansson for automorphic forms on comp act Shimura curves over $mathbf{Q}$. These sheaves are then verified to be isomorphic to the ones introduced by Andreatta--Iovita--Pilloni. Secondly, we establish an overconvergent Eichler--Shimura morphism for Siegel modular forms, generalising the result of Andreatta--Iovita--Stevens for elliptic modular forms.
254 - Dohoon Choi , YoungJu Choie 2007
Serre obtained the p-adic limit of the integral Fourier coefficient of modular forms on $SL_2(mathbb{Z})$ for $p=2,3,5,7$. In this paper, we extend the result of Serre to weakly holomorphic modular forms of half integral weight on $Gamma_{0}(4N)$ for $N=1,2,4$. A proof is based on linear relations among Fourier coefficients of modular forms of half integral weight. As applications we obtain congruences of Borcherds exponents, congruences of quotient of Eisentein series and congruences of values of $L$-functions at a certain point are also studied. Furthermore, the congruences of the Fourier coefficients of Siegel modular forms on Maass Space are obtained using Ikeda lifting.
329 - D.R. Heath-Brown 2009
A variant of Brauers induction method is developed. It is shown that quartic p-adic forms with at least 9127 variables have non-trivial zeros, for every p. For odd p considerably fewer variables are needed. There are also subsidiary new results concerning quintic forms, and systems of forms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا