ﻻ يوجد ملخص باللغة العربية
In this paper, the functional Quermassintegrals of log-concave functions in $mathbb R^n$ are discussed, we obtain the integral expression of the $i$-th functional mixed Quermassintegrals, which are similar to the integral expression of the $i$-th Quermassintegrals of convex bodies.
Let $C$ and $K$ be centrally symmetric convex bodies of volume $1$ in ${mathbb R}^n$. We provide upper bounds for the multi-integral expression begin{equation*}|{bf t}|_{C^s,K}=int_{C}cdotsint_{C}Big|sum_{j=1}^st_jx_jBig|_K,dx_1cdots dx_send{equation
A question related to some conjectures of Lutwak about the affine quermassintegrals of a convex body $K$ in ${mathbb R}^n$ asks whether for every convex body $K$ in ${mathbb R}^n$ and all $1leqslant kleqslant n$ $$Phi_{[k]}(K):={rm vol}_n(K)^{-frac{1
The goal of this paper is to push forward the study of those properties of log-concave measures that help to estimate their Poincar{e} constant. First we revisit E. Milmans result [40] on the link between weak (Poincar{e} or concentration) inequaliti
Nonparametric statistics for distribution functions F or densities f=F under qualitative shape constraints provides an interesting alternative to classical parametric or entirely nonparametric approaches. We contribute to this area by considering a n
Affine invariant points and maps for sets were introduced by Grunbaum to study the symmetry structure of convex sets. We extend these notions to a functional setting. The role of symmetry of the set is now taken by evenness of the function. We show t