ترغب بنشر مسار تعليمي؟ اضغط هنا

Affine quermassintegrals of random polytopes

105   0   0.0 ( 0 )
 نشر من قبل Giorgos Chasapis
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A question related to some conjectures of Lutwak about the affine quermassintegrals of a convex body $K$ in ${mathbb R}^n$ asks whether for every convex body $K$ in ${mathbb R}^n$ and all $1leqslant kleqslant n$ $$Phi_{[k]}(K):={rm vol}_n(K)^{-frac{1}{n}}left (int_{G_{n,k}}{rm vol}_k(P_F(K))^{-n},d u_{n,k}(F)right )^{-frac{1}{kn}}leqslant csqrt{n/k},$$ where $c>0$ is an absolute constant. We provide an affirmative answer for some broad classes of random polytopes. We also discuss upper bounds for $Phi_{[k]}(K)$ when $K=B_1^n$, the unit ball of $ell_1^n$, and explain how this special instance has implications for the case of a general unconditional convex body $K$.



قيم البحث

اقرأ أيضاً

In this paper, the functional Quermassintegrals of log-concave functions in $mathbb R^n$ are discussed, we obtain the integral expression of the $i$-th functional mixed Quermassintegrals, which are similar to the integral expression of the $i$-th Quermassintegrals of convex bodies.
Let $C$ and $K$ be centrally symmetric convex bodies of volume $1$ in ${mathbb R}^n$. We provide upper bounds for the multi-integral expression begin{equation*}|{bf t}|_{C^s,K}=int_{C}cdotsint_{C}Big|sum_{j=1}^st_jx_jBig|_K,dx_1cdots dx_send{equation *} in the case where $C$ is isotropic. Our approach provides an alternative proof of the sharp lower bound, due to Gluskin and V. Milman, for this quantity. We also present some applications to randomized vector balancing problems.
129 - Andrew Newman 2020
A two-step model for generating random polytopes is considered. For parameters $d$, $m$, and $p$, the first step is to generate a simple polytope $P$ whose facets are given by $m$ uniform random hyperplanes tangent to the unit sphere in $mathbb{R}^d$ , and the second step is to sample each vertex of $P$ independently with probability $p$ and let $Q$ be the convex hull of the sampled vertices. We establish results on how well $Q$ approximates the unit sphere in terms of $m$ and $p$ as well as asymptotics on the combinatorial complexity of $Q$ for certain regimes of $p$.
Let $K$ be a convex body in $mathbb{R}^n$ and $f : partial K rightarrow mathbb{R}_+$ a continuous, strictly positive function with $intlimits_{partial K} f(x) d mu_{partial K}(x) = 1$. We give an upper bound for the approximation of $K$ in the symmet ric difference metric by an arbitrarily positioned polytope $P_f$ in $mathbb{R}^n$ having a fixed number of vertices. This generalizes a result by Ludwig, Schutt and Werner $[36]$. The polytope $P_f$ is obtained by a random construction via a probability measure with density $f$. In our result, the dependence on the number of vertices is optimal. With the optimal density $f$, the dependence on $K$ in our result is also optimal.
Let $X_1,ldots,X_N$, $N>n$, be independent random points in $mathbb{R}^n$, distributed according to the so-called beta or beta-prime distribution, respectively. We establish threshold phenomena for the volume, intrinsic volumes, or more general measu res of the convex hulls of these random point sets, as the space dimension $n$ tends to infinity. The dual setting of polytopes generated by random halfspaces is also investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا