ترغب بنشر مسار تعليمي؟ اضغط هنا

Affine invariant maps for log-concave functions

109   0   0.0 ( 0 )
 نشر من قبل Ben Li
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Affine invariant points and maps for sets were introduced by Grunbaum to study the symmetry structure of convex sets. We extend these notions to a functional setting. The role of symmetry of the set is now taken by evenness of the function. We show that among the examples for affine invariant points are the classical center of gravity of a log-concave function and its Santalo point. We also show that the recently introduced floating functions and the John- and Lowner functions are examples of affine invariant maps. Their centers provide new examples of affine invariant points for log-concave functions.



قيم البحث

اقرأ أيضاً

The aim of this paper is to develop the $L_p$ John ellipsoid for the geometry of log-concave functions. Using the results of the $L_p$ Minkowski theory for log-concave function established in cite{fan-xin-ye-geo2020}, we characterize the $L_p$ John e llipsoid for log-concave function, and establish some inequalities of the $L_p$ John ellipsoid for log-concave function. Finally, the analog of Balls volume ratio inequality for the $L_p$ John ellipsoid of log-concave function is established.
Nonparametric statistics for distribution functions F or densities f=F under qualitative shape constraints provides an interesting alternative to classical parametric or entirely nonparametric approaches. We contribute to this area by considering a n ew shape constraint: F is said to be bi-log-concave, if both log(F) and log(1 - F) are concave. Many commonly considered distributions are compatible with this constraint. For instance, any c.d.f. F with log-concave density f = F is bi-log-concave. But in contrast to the latter constraint, bi-log-concavity allows for multimodal densities. We provide various characterizations. It is shown that combining any nonparametric confidence band for F with the new shape-constraint leads to substantial improvements, particularly in the tails. To pinpoint this, we show that these confidence bands imply non-trivial confidence bounds for arbitrary moments and the moment generating function of F.
In this paper, the functional Quermassintegrals of log-concave functions in $mathbb R^n$ are discussed, we obtain the integral expression of the $i$-th functional mixed Quermassintegrals, which are similar to the integral expression of the $i$-th Quermassintegrals of convex bodies.
We introduce the notion of Loewner (ellipsoid) function for a log concave function and show that it is an extension of the Loewner ellipsoid for convex bodies. We investigate its duality relation to the recently defined John (ellipsoid) function by A lonso-Gutierrez, Merino, Jimenez and Villa. For convex bodies, John and Loewner ellipsoids are dual to each other. Interestingly, this need not be the case for the John function and the Loewner function.
For positive semidefinite matrices $A$ and $B$, Ando and Zhan proved the inequalities $||| f(A)+f(B) ||| ge ||| f(A+B) |||$ and $||| g(A)+g(B) ||| le ||| g(A+B) |||$, for any unitarily invariant norm, and for any non-negative operator monotone $f$ on $[0,infty)$ with inverse function $g$. These inequalities have very recently been generalised to non-negative concave functions $f$ and non-negative convex functions $g$, by Bourin and Uchiyama, and Kosem, respectively. In this paper we consider the related question whether the inequalities $||| f(A)-f(B) ||| le ||| f(|A-B|) |||$, and $||| g(A)-g(B) ||| ge ||| g(|A-B|) |||$, obtained by Ando, for operator monotone $f$ with inverse $g$, also have a similar generalisation to non-negative concave $f$ and convex $g$. We answer exactly this question, in the negative for general matrices, and affirmatively in the special case when $Age ||B||$. In the course of this work, we introduce the novel notion of $Y$-dominated majorisation between the spectra of two Hermitian matrices, where $Y$ is itself a Hermitian matrix, and prove a certain property of this relation that allows to strengthen the results of Bourin-Uchiyama and Kosem, mentioned above.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا