ﻻ يوجد ملخص باللغة العربية
Metallic thin-walled round tubes are widely used as energy absorption elements. However, lateral splash of the round tubes under impact loadings reduces the energy absorption efficiency and may cause secondary damages. Therefore, it is necessary to assemble and fasten round tubes together by boundary constraints and/or fasteners between tubes, which increases the time and labor cost and affects the mechanical performance of round tubes. In an effort to break through this limitation, a novel self-locked energy-absorbing system has been proposed in this paper. The proposed system is made up of thin-walled tubes with dumbbell-shaped cross section, which are specially designed to interlock with each other and thus provide lateral constraint under impact loadings. Both finite element simulations and impact experiment demonstrated that without boundary constraints or fasteners between tubes, the proposed self-locked energy-absorbing system can still effectively attenuate impact loads while the round tube systems fail to carry load due to the lateral splashing of tubes. Furthermore, the optimal geometric design for a single dumbbell-shaped tube and the optimal stacking arrangement for the system are discussed, and a general guideline on the structural design of the proposed self-locked energy absorbing system is provided.
A molecular dynamics simulation is performed to investigate spatial scale of low energy excitation (LEE) in a single linear chain of united atoms. The self part of the dynamic structure function, $S_mathrm{S}(q,omega)$, is obtained in a wide range in
The electronic conductance of a molecule making contact to electrodes is determined by the coupling of discrete molecular states to the continuum electrode density of states. Interactions between bound states and continua can be modeled exactly by us
Management of discarded tires is a compelling environmental issue worldwide. Although several approaches have been developed to recycle waste tire rubbers, their application in solid-state cooling is still unexplored. Considering the high barocaloric
Graphene is at the center of a significant research effort. Near-ballistic transport at room temperature and high mobility make it a potential material for nanoelectronics. Its electronic and mechanical properties are also ideal for micro and nanomec
The action functional for a linear elastic medium with dislocations is given. The equations of motion following from this action reproduce the Peach-K{o}hler and Lorentzian forces experienced by dislocations. The explicit expressions for singular and