ﻻ يوجد ملخص باللغة العربية
The electronic conductance of a molecule making contact to electrodes is determined by the coupling of discrete molecular states to the continuum electrode density of states. Interactions between bound states and continua can be modeled exactly by using the (energy-dependent) self-energy, or approximately by using a complex potential. We discuss the relation between the two approaches and give a prescription for using the self-energy to construct an energy-independent, non-local, complex potential. We apply our scheme to studying single-electron transmission in an atomic chain, obtaining excellent agreement with the exact result. Our approach allows us to treat electron-reservoir couplings independent of single electron energies, allowing for the definition of a one-body operator suitable for inclusion into correlated electron transport calculations.
Metallic thin-walled round tubes are widely used as energy absorption elements. However, lateral splash of the round tubes under impact loadings reduces the energy absorption efficiency and may cause secondary damages. Therefore, it is necessary to a
In this work, we use the thermodynamically consistent and conserving self-energy embedding theory (SEET) to study the spectra of the prototypical undistorted cubic perovskites SrVO$_3$ and SrMnO$_3$. In the strongly correlated metallic SrVO$_3$ we fi
We present measurement and analysis techniques that allow the complete complex magneto-conductivity tensor to be determined from mid-infrared (11-1.6 micron; 100-800 meV) measurements of the complex Faraday (theta_F) and Kerr (theta_K) angles. Since
Investigations of the Fermi surface via the electron momentum distribution reconstructed from either angular correlation of annihilation radiation (or Compton scattering) experimental spectra are presented. The basis of these experiments and mathemat
Pulsed-laser deposition (PLD) is one of the most promising techniques for the formation of complex-oxide heterostructures, superlattices, and well-controlled interfaces. The first part of this paper presents a review of several useful modifications o