ﻻ يوجد ملخص باللغة العربية
Management of discarded tires is a compelling environmental issue worldwide. Although several approaches have been developed to recycle waste tire rubbers, their application in solid-state cooling is still unexplored. Considering the high barocaloric potential verified for elastomers, the use of waste tire rubber (WTR) as refrigerant in solid-state cooling devices is very promising. Here, we investigated the barocaloric effects in WTR and polymer blends made of vulcanized natural rubber (VNR) and WTR, in order to evaluate its feasibility for solid-state cooling technologies. The adiabatic temperature change and the isothermal entropy change reach giant values, as well as the performance parameters, being comparable or even better than most barocaloric materials in literature. Moreover, pure WTR and WTR-based samples also present a faster thermal exchange than VNR, consisting in an additional advantage of using these discarded materials. Thus, the present findings evidence the encouraging perspectives of employing waste rubbers in solid-state cooling based on barocaloric effect, contributing in both the recycling of polymers and the sustainable energy technology field.
We report a heat dynamics analysis of the electrocaloric effect (ECE) in commercial multilayer capacitors based on BaTiO3 dielectric, a promising candidate for applications as a solid state cooling device. Direct measurements of the time evolution of
The frontiers of quantum electronics have been linked to the discovery of new refrigeration methods since the discovery of superconductivity at a temperature around $4,$K, enabled by the liquefaction of helium. Since then, the advances in cryogenics
Charge migration along DNA molecules has attracted scientific interest for over half a century. Reports on possible high rates of charge transfer between donor and acceptor through the DNA, obtained in the last decade from solution chemistry experime
Metallic thin-walled round tubes are widely used as energy absorption elements. However, lateral splash of the round tubes under impact loadings reduces the energy absorption efficiency and may cause secondary damages. Therefore, it is necessary to a
Finding new ionic conductors that enable significant advancements in the development of energy-storage devices is a challenging goal of current material science. Aside of material classes as ionic liquids or amorphous ion conductors, the so-called pl