ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of homogenous broadening on the Rabi splitting in micropillar cavities with strong light-matter interaction

145   0   0.0 ( 0 )
 نشر من قبل Misael Leon Hilario
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We solve the low-energy part of the spectrum of a model that describes a cavity mode strongly coupled to an exciton, and both modes coupled to continua of bosonic excitations which give rise to homogeneous broadenig. The spectral density of the cavity modes in the low-energy manifold agrees with measured photoluminiscense spectra. We suggest fitting these spectra with a sum of two asymmetric Lorentzians.



قيم البحث

اقرأ أيضاً

We present a detailed experimental characterization of the spectral and spatial structure of the confined optical modes for oxide-apertured micropillar cavities, showing good-quality Hermite-Gaussian profiles, easily mode-matched to external fields. We further derive a relation between the frequency splitting of the transverse modes and the expected Purcell factor. Finally, we describe a technique to retrieve the profile of the confining refractive index distribution from the spatial profiles of the modes.
Interaction of traveling wave of classic light with 1D-chain of coupled quantum dots (QDs) in strong coupling regime has been theoretically considered. The effect of space propagation of Rabi oscillations in the form of traveling waves and wave packe ts has been predicted. Physical interpretation of the effect has been given, principles of its experimental observation are discussed.
We evaluate the exact dipole coupling strength between a single emitter and the radiation field within an optical cavity, taking into account the effects of multilayer dielectric mirrors. Our model allows one to freely vary the resonance frequency of the cavity, the frequency of light or atomic transition addressing it and the design wavelength of the dielectric mirror. The coupling strength is derived for an open system with unbound frequency modes. For very short cavities, the effective length used to determine their mode volume and the lengths defining their resonances are different, and also found to diverge appreciably from their geometric length, with the radiation field being strongest within the dielectric mirror itself. Only for cavities much longer than their resonant wavelength does the mode volume asymptotically approach that normally assumed from their geometric length.
Strong coupling between light and the fundamental excitations of a two-dimensional electron gas (2DEG) are of foundational importance both to pure physics and to the understanding and development of future photonic nanotechnologies. Here we study the relationship between spin polarization of a 2DEG in a monolayer semiconductor, MoSe$_2$, and light-matter interactions modified by a zero-dimensional optical microcavity. We find robust spin-susceptibility of the 2DEG to simultaneously enhance and suppress trion-polariton formation in opposite photon helicities. This leads to observation of a giant effective valley Zeeman splitting for trion-polaritons (g-factor >20), exceeding the purely trionic splitting by over five times. Going further, we observe robust effective optical non-linearity arising from the highly non-linear behaviour of the valley-specific strong light-matter coupling regime, and allowing all-optical tuning of the polaritonic Zeeman splitting from 4 to >10 meV. Our experiments lay the groundwork for engineering quantum-Hall-like phases with true unidirectionality in monolayer semiconductors, accompanied by giant effective photonic non-linearities rooted in many-body exciton-electron correlations.
In transition metal dichalcogenides layers of atomic scale thickness, the electron-hole Coulomb interaction potential is strongly influenced by the sharp discontinuity of the dielectric function across the layer plane. This feature results in peculia r non-hydrogenic excitonic states, in which exciton-mediated optical nonlinearities are predicted to be enhanced as compared to their hydrogenic counterpart. To demonstrate this enhancement, we performed optical transmission spectroscopy of a MoSe$_2$ monolayer placed in the strong coupling regime with the mode of an optical microcavity, and analyzed the results quantitatively with a nonlinear input-output theory. We find an enhancement of both the exciton-exciton interaction and of the excitonic fermionic saturation with respect to realistic values expected in the hydrogenic picture. Such results demonstrate that unconventional excitons in MoSe$_2$ are highly favourable for the implementation of large exciton-mediated optical nonlinearities, potentially working up to room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا