ﻻ يوجد ملخص باللغة العربية
In transition metal dichalcogenides layers of atomic scale thickness, the electron-hole Coulomb interaction potential is strongly influenced by the sharp discontinuity of the dielectric function across the layer plane. This feature results in peculiar non-hydrogenic excitonic states, in which exciton-mediated optical nonlinearities are predicted to be enhanced as compared to their hydrogenic counterpart. To demonstrate this enhancement, we performed optical transmission spectroscopy of a MoSe$_2$ monolayer placed in the strong coupling regime with the mode of an optical microcavity, and analyzed the results quantitatively with a nonlinear input-output theory. We find an enhancement of both the exciton-exciton interaction and of the excitonic fermionic saturation with respect to realistic values expected in the hydrogenic picture. Such results demonstrate that unconventional excitons in MoSe$_2$ are highly favourable for the implementation of large exciton-mediated optical nonlinearities, potentially working up to room temperature.
The valley pseudospin in monolayer transition metal dichalcogenides (TMDs) has been proposed as a new way to manipulate information in various optoelectronic devices. This relies on a large valley polarization that remains stable over long timescales
By pumping nonresonantly a MoS$_2$ monolayer at $13$ K under a circularly polarized cw laser, we observe exciton energy redshifts that break the degeneracy between B excitons with opposite spin. The energy splitting increases monotonically with the l
The temperature-dependent optical response of excitons in semiconductors is controlled by the exciton-phonon interaction. When the exciton-lattice coupling is weak, the excitonic line has a Lorentzian profile resulting from motional narrowing, with a
Exciton condensation in an electron-hole bilayer system of monolayer transition metal dichalcogenides is analyzed at three different levels of theory to account for screening and quasiparticle renormalization. The large effective masses of the transi
We present a model for exciton-plasmon coupling based on an energy exchange mechanism between quantum emitters (QE) and localized surface plasmons in metal-dielectric structures. Plasmonic correlations between QEs give rise to a collective state exch