ﻻ يوجد ملخص باللغة العربية
We evaluate the exact dipole coupling strength between a single emitter and the radiation field within an optical cavity, taking into account the effects of multilayer dielectric mirrors. Our model allows one to freely vary the resonance frequency of the cavity, the frequency of light or atomic transition addressing it and the design wavelength of the dielectric mirror. The coupling strength is derived for an open system with unbound frequency modes. For very short cavities, the effective length used to determine their mode volume and the lengths defining their resonances are different, and also found to diverge appreciably from their geometric length, with the radiation field being strongest within the dielectric mirror itself. Only for cavities much longer than their resonant wavelength does the mode volume asymptotically approach that normally assumed from their geometric length.
The concept of parity describes the inversion symmetry of a system and is of fundamental relevance in the standard model, quantum information processing, and field theory. In quantum electrodynamics, parity is conserved and large field gradients are
Magnetic interaction between photons and dipoles is essential in electronics, sensing, spectroscopy, and quantum computing. However, its weak strength often requires resonators to confine and store the photons. Here, we present mode engineering techn
Cavity-QED systems have recently reached a regime where the light-matter interaction strength amounts to a non-negligible fraction of the resonance frequencies of the bare subsystems. In this regime, it is known that the usual normal-order correlatio
We address the quantum estimation of the diamagnetic, or $A^2$, term in an effective model of light-matter interaction featuring two coupled oscillators. First, we calculate the quantum Fisher information of the diamagnetic parameter in the interacti
We solve the low-energy part of the spectrum of a model that describes a cavity mode strongly coupled to an exciton, and both modes coupled to continua of bosonic excitations which give rise to homogeneous broadenig. The spectral density of the cavit