ﻻ يوجد ملخص باللغة العربية
Phase transition and critical properties of Ising-like spin-orbital interacting systems in 2-dimensional triangular lattice are investigated. We first show that the ground state of the system is a composite spin-orbital ferro-ordered phase. Though Landau effective field theory predicts the second-order phase transition of the composite spin-orbital order, however, the critical exponents obtained by the renormalization group approach demonstrate that the spin-orbital order-disorder transition is far from the second-order, rather, it is more close to the first-order, implying that the widely observed first-order transition in many transition-metal oxides may be intrinsic. The unusual critical behavior near the transition point is attributed to the fractionalization of the composite order parameter.
We study the effect of perpendicular single-ion anisotropy, $-As_{text{z}}^2$, on the ground-state structure and finite-temperature properties of a two-dimensional magnetic nanodot in presence of a dipolar interaction of strength $D$. By a simulated
We study magnetic fluctuations in a system of interacting spins on a lattice at high temperatures and in the presence of a spatially varying magnetic field. Starting from a microscopic Hamiltonian we derive effective equations of motion for the spins
Recently, generative machine-learning models have gained popularity in physics, driven by the goal of improving the efficiency of Markov chain Monte Carlo techniques and of exploring their potential in capturing experimental data distributions. Motiv
Contrary to the conventional wisdom in Hermitian systems, a continuous quantum phase transition between gapped phases is shown to occur without closing the energy gap $Delta$ in non-Hermitian quantum many-body systems. Here, the relevant length scale
We present a microscopic theory of the second order phase transition in an interacting Bose gas that allows one to describe formation of an ordered condensate phase from a disordered phase across an entire critical region continuously. We derive the