ﻻ يوجد ملخص باللغة العربية
We present a microscopic theory of the second order phase transition in an interacting Bose gas that allows one to describe formation of an ordered condensate phase from a disordered phase across an entire critical region continuously. We derive the exact fundamental equations for a condensate wave function and the Green functions, which are valid both inside and outside the critical region. They are reduced to the usual Gross-Pitaevskii and Beliaev-Popov equations in a low-temperature limit outside the critical region. The theory is readily extendable to other phase transitions, in particular, in the physics of condensed matter and quantum fields.
The problem of finding a microscopic theory of phase transitions across a critical point is a central unsolved problem in theoretical physics. We find a general solution to that problem and present it here for the cases of Bose-Einstein condensation
We find universal structure and scaling of BEC statistics and thermodynamics for mesoscopic canonical-ensemble ideal gas in a trap for any parameters, including critical region. We identify universal constraint-cut-off mechanism that makes BEC fluctu
We detail the use of simple machine learning algorithms to determine the critical Bose-Einstein condensation (BEC) critical temperature $T_text{c}$ from ensembles of paths created by path-integral Monte Carlo (PIMC) simulations. We quickly overview c
Bose-Einstein condensation, the macroscopic occupation of a single quantum state, appears in equilibrium quantum statistical mechanics and persists also in the hydrodynamic regime close to equilibrium. Here we show that even when a degenerate Bose ga
An exciton is an electron-hole pair bound by attractive Coulomb interaction. Short-lived excitons have been detected by a variety of experimental probes in numerous contexts. An excitonic insulator, a collective state of such excitons, has been more