ﻻ يوجد ملخص باللغة العربية
We study magnetic fluctuations in a system of interacting spins on a lattice at high temperatures and in the presence of a spatially varying magnetic field. Starting from a microscopic Hamiltonian we derive effective equations of motion for the spins and solve these equations self-consistently. We find that the spin fluctuations can be described by an effective diffusion equation with a diffusion coefficient which strongly depends on the ratio of the magnetic field gradient to the strength of spin-spin interactions. We also extend our studies to account for external noise and find that the relaxation times and the diffusion coefficient are mutually dependent.
Phase transition and critical properties of Ising-like spin-orbital interacting systems in 2-dimensional triangular lattice are investigated. We first show that the ground state of the system is a composite spin-orbital ferro-ordered phase. Though La
We study in this paper magnetic properties of a system of quantum Heisenberg spins interacting with each other via a ferromagnetic exchange interaction J and an in-plane Dzyaloshinskii-Moriya interaction D. The non-collinear ground state due to the c
We consider the effects of long-range temporal correlations in many-particle systems, focusing particularly on fluctuations about the typical behaviour. For a specific class of memory dependence we discuss the modification of the large deviation prin
The quantum fluctuations of the entropy production for fermionic systems in the Landauer-Buttiker non-equilibrium steady state are investigated. The probability distribution, governing these fluctuations, is explicitly derived by means of quantum fie