ترغب بنشر مسار تعليمي؟ اضغط هنا

تقدم JHU-Microsoft لتقدير جودة WMT21 المهمة المشتركة

The JHU-Microsoft Submission for WMT21 Quality Estimation Shared Task

246   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تقدم هذه الورقة التقديم المشترك JHU-Microsoft لتقدير جودة WMT 2021 المهمة المشتركة.نحن نشارك فقط في المهمة 2 (تقدير جهود ما بعد التحرير) للمهمة المشتركة، مع التركيز على تقدير الجودة على مستوى الكلمات المستهدف.التقنيات التي تجربناها مع تضمين تدريب محول Levenshtein وتعزيز البيانات مع مجموعة من الترجمة الأمامية والخلفية والرحلة الدائرية، والتحرير الزائف بعد إخراج MT.نوضح القدرة التنافسية لنظامنا مقارنة بناسي Openkiwi-XLM المعتمد على نطاق واسع.نظامنا هو أيضا نظام الترتيب العلوي في متري MT MCC لزوج اللغة الإنجليزية والألمانية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تصف هذه الورقة تقديم Papago إلى مهمة تقدير الجودة WMT 2021 1: التقييم المباشر على مستوى الجملة.يستكشف نظام تقدير الجودة متعدد اللغات لدينا مزيج من نماذج اللغة المحددة مسبقا وبنية التعلم متعددة المهام.نقترح خط أنابيب تدريب تكراري يعتمد على ما يحقظ بكم يات كبيرة من البيانات الاصطناعية داخل المجال وتصفية البيانات الذهبية (المسمى).ثم قمنا بضغط نظامنا عبر تقطير المعرفة من أجل تقليل المعلمات بعد الحفاظ على أداء قوي.تنفذ أنظمتنا متعددة اللغات متعددة اللغات بشكل تنافسي في تعدد اللغات وجميع إعدادات زوج اللغة الفردية 11 بما في ذلك صفر النار.
يصف هذا التقرير أن أنظمة ترجمة آلات Microsoft للمهمة المشتركة WMT21 على الترجمة ذات الجهاز متعدد اللغات على نطاق واسع.شاركنا في مسارات التقييم الثلاثة بما في ذلك المسار الكبير والمسارين الصغيرين حيث لا يتم حدوث المرء السابق وأن الأخيران مقيدان تماما. تم تهيئة الطلبات النموذجية الخاصة بنا إلى المهمة المشتركة مع Deltalm، وهو نموذج فك ترميز ترميز متعدد اللغز متعدد اللغات مسبقا، ويتم ضبطه بشكل جيد في المقابل مع البيانات الموازية المستديرة ومصادر البيانات المسموح بها وفقا لإعدادات المسار، جنبا إلى جنب مع تطبيق التعلم التدريجي والتكرارمناهج الترجمة الخلفية لمزيد من تحسين الأداء.تم تصنيف التقديمات النهائية لدينا في المرتبة الأولى على ثلاثة مسارات من حيث مقياس التقييم التلقائي.
يعد تقدير الجودة (QE) مكونا هاما لسير عمل الترجمة الآلي لأنه يقيم جودة الإخراج المترجم دون الترجمات المرجعية الاستشارية.في هذه الورقة، نناقش التقديم لدينا إلى المهمة المشتركة WMT 2021 QE.إننا نشارك في المهمة الفرعية الفرعية على مستوى الجملة 2 المهام التي تتحدى المشاركين للتنبؤ بدرجة HTER من أجل جهد التحرير على مستوى الجملة.نظامنا المقترح هو مجموعة من نماذج الانحدار من بيرت (mbert) متعددة اللغات، والتي يتم إنشاؤها بواسطة ضبط صقلها على إعدادات الإدخال المختلفة.يوضح أداء قابلا للمقارنة فيما يتعلق بترابط بيرسون، وتغلب على نظام الأساس في ماي / رموز لعدة أزواج اللغة.بالإضافة إلى ذلك، نقوم بتكييف نظامنا لإعداد اللقطة الصفرية من خلال استغلال أزواج اللغة ذات الصلة بالغة والترجمات المرجعية الزائفة.
نقدم المساهمة المشتركة في IST و Grongel بمهمة WMT 2021 المشتركة بشأن تقدير الجودة.شارك فريقنا في مهمتين: التقييم المباشر وجهد التحرير بعد، يشمل ما مجموعه 35 تقريرا.بالنسبة لجميع التقديمات، ركزت جهودنا على تدريب النماذج متعددة اللغات على رأس الهندسة ا لمعمارية المتنبئة ل OpenKiwi، باستخدام ترميزات متعددة اللغات المدربة مسبقا جنبا إلى جنب مع المحولات.نؤدي إلى مزيد من التجربة والأهداف والميزات المرتبطة بعدم اليقين بالإضافة إلى التدريب على بيانات التقييم المباشر خارج المجال.
في هذه الورقة، نصف إنشادنا إلى المهمة المشتركة بمقاييس WMT 2021.نستخدم الأسئلة والأجوبة التي تم إنشاؤها تلقائيا لتقييم جودة أنظمة الترجمة الآلية (MT).إن تقديمنا يبني على إطار MTEQA المقترح مؤخرا.تظهر التجارب على مجموعات بيانات تقييم WMT20 أنه على مست وى النظام، يحقق Mteqa Metric أداء قابلا للمقارنة مع حلول حديثة أخرى، مع مراعاة كمية معينة فقط من الترجمة بأكملها.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا