ﻻ يوجد ملخص باللغة العربية
Let $mathfrak{a}$ be an ideal of a noetherian (not necessarily local) ring $R$ and $M$ an $R$-module with $mathrm{Supp}_RMsubseteqmathrm{V}(mathfrak{a})$. We show that if $mathrm{dim}_RMleq2$, then $M$ is $mathfrak{a}$-cofinite if and only if $mathrm{Ext}^i_R(R/mathfrak{a},M)$ are finitely generated for all $ileq 2$, which generalizes one of the main results in [Algebr. Represent. Theory 18 (2015) 369--379]. Some new results concerning cofiniteness of local cohomology modules $mathrm{H}^i_mathfrak{a}(M)$ for any finitely generated $R$-module $M$ are obtained.
We introduce a notion of generalized local cohomology modules with respect to a pair of ideals $(I,J)$ which is a generalization of the concept of local cohomology modules with respect to $(I,J).$ We show that generalized local cohomology modules $
Let a be an ideal of a commutative Noetherian ring R with identity. We study finitely generated R-modules M whose a-finiteness and a-cohomological dimensions are equal. In particular, we examine relative analogues of quasi-Buchsbaum, Buchsbaum and su
In the context of modeling biological systems, it is of interest to generate ideals of points with a unique reduced Groebner basis, and the first main goal of this paper is to identify classes of ideals in polynomial rings which share this property.
A contemporary and exciting application of Groebner bases is their use in computational biology, particularly in the reverse engineering of gene regulatory networks from experimental data. In this setting, the data are typically limited to tens of po
Let R be a commutative noetherian ring. In this paper, we study specialization-closed subsets of Spec R. More precisely, we first characterize the specialization-closed subsets in terms of various closure properties of subcategories of modules. Then,