ﻻ يوجد ملخص باللغة العربية
In the context of modeling biological systems, it is of interest to generate ideals of points with a unique reduced Groebner basis, and the first main goal of this paper is to identify classes of ideals in polynomial rings which share this property. Moreover, we provide methodologies for constructing such ideals. We then relax the condition of uniqueness. The second and most relevant topic discussed here is to consider and identify pairs of ideals with the same number of reduced Groebner bases, that is, with the same cardinality of their associated Groebner fan.
We present an algorithm for computing Groebner bases of vanishing ideals of points that is optimized for the case when the number of points in the associated variety is less than the number of indeterminates. The algorithm first identifies a set of e
A contemporary and exciting application of Groebner bases is their use in computational biology, particularly in the reverse engineering of gene regulatory networks from experimental data. In this setting, the data are typically limited to tens of po
We describe the universal Groebner basis of the ideal of maximal minors and the ideal of $2$-minors of a multigraded matrix of linear forms. Our results imply that the ideals are radical and provide bounds on the regularity. In particular, the ideals
The paper has two goals: the study the associated graded ring of contracted homogeneous ideals in $K[x,y]$ and the study of the Groebner fan of the ideal $P$ of the rational normal curve in ${bf P}^d$. These two problems are, quite surprisingly, very
Let $X$ be a set of points whose coordinates are known with limited accuracy; our aim is to give a characterization of the vanishing ideal $I(X)$ independent of the data uncertainty. We present a method to compute a polynomial basis $B$ of $I(X)$ whi