ﻻ يوجد ملخص باللغة العربية
Let a be an ideal of a commutative Noetherian ring R with identity. We study finitely generated R-modules M whose a-finiteness and a-cohomological dimensions are equal. In particular, we examine relative analogues of quasi-Buchsbaum, Buchsbaum and surjective Buchsbaum modules. We reveal several interactions between these types of modules that extend some of the existing results in the classical theory to the relative one.
Let R be a commutative noetherian ring. In this paper, we study specialization-closed subsets of Spec R. More precisely, we first characterize the specialization-closed subsets in terms of various closure properties of subcategories of modules. Then,
In this paper, we introduce and study the class of $phi$-$w$-flat modules which are generalizations of both $phi$-flat modules and $w$-flat modules. The $phi$-$w$-weak global dimension $phi$-$w$-w.gl.dim$(R)$ of a commutative ring $R$ is also introdu
Let $mathfrak{a}$ be an ideal of a noetherian (not necessarily local) ring $R$ and $M$ an $R$-module with $mathrm{Supp}_RMsubseteqmathrm{V}(mathfrak{a})$. We show that if $mathrm{dim}_RMleq2$, then $M$ is $mathfrak{a}$-cofinite if and only if $mathrm
Let fa be an ideal of a commutative Noetherian ring R and M and N two finitely generated R-modules. Let cd_{fa}(M,N) denote the supremum of the is such that H^i_{fa}(M,N) eq 0. First, by using the theory of Gorenstein homological dimensions, we obtai
Let (R,m) be a commutative Noetherian local ring. It is known that R is Cohen-Macaulay if there exists either a nonzero finitely generated R-module of finite injective dimension or a nonzero Cohen-Macaulay R-module of finite projective dimension. In