ﻻ يوجد ملخص باللغة العربية
Using a high degree of parallelism is essential to perform data assimilation efficiently. The state formulation of the incremental weak constraint four-dimensional variational data assimilation method allows parallel calculations in the time dimension. In this approach, the solution is approximated by minimising a series of quadratic cost functions using the conjugate gradient method. To use this method in practice, effective preconditioning strategies that maintain the potential for parallel calculations are needed. We examine approximations to the control variable transform (CVT) technique when the latter is beneficial. The new strategy employs a randomised singular value decomposition and retains the potential for parallelism in the time domain. Numerical results for the Lorenz 96 model show that this approach accelerates the minimisation in the first few iterations, with better results when CVT performs well.
There is growing awareness that errors in the model equations cannot be ignored in data assimilation methods such as four-dimensional variational assimilation (4D-Var). If allowed for, more information can be extracted from observations, longer time
In [2019, Space-time least-squares finite elements for parabolic equations, arXiv:1911.01942] by Fuhrer& Karkulik, well-posedness of a space-time First-Order System Least-Squares formulation of the heat equation was proven. In the present work, this
In this paper, we develop an iterative scheme to construct multiscale basis functions within the framework of the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) for the mixed formulation. The iterative procedur
Time-space fractional Bloch-Torrey equations are developed by some researchers to investigate the relationship between diffusion and fractional-order dynamics. In this paper, we first propose a second-order scheme for this equation by employing the r
Using the framework of operator or Calderon preconditioning, uniform preconditioners are constructed for elliptic operators discretized with continuous finite (or boundary) elements. The preconditioners are constructed as the composition of an opposi