ترغب بنشر مسار تعليمي؟ اضغط هنا

On the bilateral preconditioning for a L2-type all-at-once system arising from time-space fractional Bloch-Torrey equations

83   0   0.0 ( 0 )
 نشر من قبل Yong-Liang Zhao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Time-space fractional Bloch-Torrey equations are developed by some researchers to investigate the relationship between diffusion and fractional-order dynamics. In this paper, we first propose a second-order scheme for this equation by employing the recently proposed L2-type formula [A.~A.~Alikhanov, C.~Huang, Appl.~Math.~Comput.~(2021) 126545]. Then, we prove the stability and the convergence of this scheme. Based on such the numerical scheme, a L2-type all-at-once system is derived. In order to solve this system in a parallel-in-time pattern, a bilateral preconditioning technique is designed according to the special structure of the system. We theoretically show that the condition number of the preconditioned matrix is uniformly bounded by a constant for the time fractional order $alpha in (0,0.3624)$. Numerical results are reported to show the efficiency of our method.



قيم البحث

اقرأ أيضاً

An all-at-once linear system arising from the nonlinear tempered fractional diffusion equation with variable coefficients is studied. Firstly, the nonlinear and linearized implicit schemes are proposed to approximate such the nonlinear equation with continuous/discontinuous coefficients. The stabilities and convergences of the two schemes are proved under several suitable assumptions, and numerical examples show that the convergence orders of these two schemes are $1$ in both time and space. Secondly, a nonlinear all-at-once system is derived based on the nonlinear implicit scheme, which may suitable for parallel computations. Newtons method, whose initial value is obtained by interpolating the solution of the linearized implicit scheme on the coarse space, is chosen to solve such the nonlinear all-at-once system. To accelerate the speed of solving the Jacobian equations appeared in Newtons method, a robust preconditioner is developed and analyzed. Numerical examples are reported to demonstrate the effectiveness of our proposed preconditioner. Meanwhile, they also imply that such the initial guess for Newtons method is more suitable.
We develop a novel iterative solution method for the incompressible Navier-Stokes equations with boundary conditions coupled with reduced models. The iterative algorithm is designed based on the variational multiscale formulation and the generalized- $alpha$ scheme. The spatiotemporal discretization leads to a block structure of the resulting consistent tangent matrix in the Newton-Raphson procedure. As a generalization of the conventional block preconditioners, a three-level nested block preconditioner is introduced to attain a better representation of the Schur complement, which plays a key role in the overall algorithm robustness and efficiency. This approach provides a flexible, algorithmic way to handle the Schur complement for problems involving multiscale and multiphysics coupling. The solution method is implemented and benchmarked against experimental data from the nozzle challenge problem issued by the US Food and Drug Administration. The robustness, efficiency, and parallel scalability of the proposed technique are then examined in several settings, including moderately high Reynolds number flows and physiological flows with strong resistance effect due to coupled downstream vasculature models. Two patient-specific hemodynamic simulations, covering systemic and pulmonary flows, are performed to further corroborate the efficacy of the proposed methodology.
83 - Daxin Nie , Weihua Deng 2021
In this paper, we consider the strong convergence of the time-space fractional diffusion equation driven by fractional Gaussion noise with Hurst index $Hin(frac{1}{2},1)$. A sharp regularity estimate of the mild solution and the numerical scheme cons tructed by finite element method for integral fractional Laplacian and backward Euler convolution quadrature for Riemann-Liouville time fractional derivative are proposed. With the help of inverse Laplace transform and fractional Ritz projection, we obtain the accurate error estimates in time and space. Finally, our theoretical results are accompanied by numerical experiments.
The paper focuses on developing and studying efficient block preconditioners based on classical algebraic multigrid for the large-scale sparse linear systems arising from the fully coupled and implicitly cell-centered finite volume discretization of multi-group radiation diffusion equations, whose coefficient matrices can be rearranged into the $(G+2)times(G+2)$ block form, where $G$ is the number of energy groups. The preconditioning techniques are based on the monolithic classical algebraic multigrid method, physical-variable based coarsening two-level algorithm and two types of block Schur complement preconditioners. The classical algebraic multigrid is applied to solve the subsystems that arise in the last three block preconditioners. The coupling strength and diagonal dominance are further explored to improve performance. We use representative one-group and twenty-group linear systems from capsule implosion simulations to test the robustness, efficiency, strong and weak parallel scaling properties of the proposed methods. Numerical results demonstrate that block preconditioners lead to mesh- and problem-independent convergence, and scale well both algorithmically and in parallel.
139 - Zhichao Fang 2021
In this paper, the time fractional reaction-diffusion equations with the Caputo fractional derivative are solved by using the classical $L1$-formula and the finite volume element (FVE) methods on triangular grids. The existence and uniqueness for the fully discrete FVE scheme are given. The stability result and optimal textit{a priori} error estimate in $L^2(Omega)$-norm are derived, but it is difficult to obtain the corresponding results in $H^1(Omega)$-norm, so another analysis technique is introduced and used to achieve our goal. Finally, two numerical examples in different spatial dimensions are given to verify the feasibility and effectiveness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا