ﻻ يوجد ملخص باللغة العربية
Time-space fractional Bloch-Torrey equations are developed by some researchers to investigate the relationship between diffusion and fractional-order dynamics. In this paper, we first propose a second-order scheme for this equation by employing the recently proposed L2-type formula [A.~A.~Alikhanov, C.~Huang, Appl.~Math.~Comput.~(2021) 126545]. Then, we prove the stability and the convergence of this scheme. Based on such the numerical scheme, a L2-type all-at-once system is derived. In order to solve this system in a parallel-in-time pattern, a bilateral preconditioning technique is designed according to the special structure of the system. We theoretically show that the condition number of the preconditioned matrix is uniformly bounded by a constant for the time fractional order $alpha in (0,0.3624)$. Numerical results are reported to show the efficiency of our method.
An all-at-once linear system arising from the nonlinear tempered fractional diffusion equation with variable coefficients is studied. Firstly, the nonlinear and linearized implicit schemes are proposed to approximate such the nonlinear equation with
We develop a novel iterative solution method for the incompressible Navier-Stokes equations with boundary conditions coupled with reduced models. The iterative algorithm is designed based on the variational multiscale formulation and the generalized-
In this paper, we consider the strong convergence of the time-space fractional diffusion equation driven by fractional Gaussion noise with Hurst index $Hin(frac{1}{2},1)$. A sharp regularity estimate of the mild solution and the numerical scheme cons
The paper focuses on developing and studying efficient block preconditioners based on classical algebraic multigrid for the large-scale sparse linear systems arising from the fully coupled and implicitly cell-centered finite volume discretization of
In this paper, the time fractional reaction-diffusion equations with the Caputo fractional derivative are solved by using the classical $L1$-formula and the finite volume element (FVE) methods on triangular grids. The existence and uniqueness for the