ﻻ يوجد ملخص باللغة العربية
There is growing awareness that errors in the model equations cannot be ignored in data assimilation methods such as four-dimensional variational assimilation (4D-Var). If allowed for, more information can be extracted from observations, longer time windows are possible, and the minimisation process is easier, at least in principle. Weak constraint 4D-Var estimates the model error and minimises a series of linear least-squares cost functionsfunctions, which can be achieved using the conjugate gradient (CG) method; minimising each cost function is called an inner loop. CG needs preconditioning to improve its performance. In previous work, limited memory preconditioners (LMPs) have been constructed using approximations of the eigenvalues and eigenvectors of the Hessian in the previous inner loop. If the Hessian changes significantly in consecutive inner loops, the LMP may be of limited usefulness. To circumvent this, we propose using randomised methods for low rank eigenvalue decomposition and use these approximations to cheaply construct LMPs using information from the current inner loop. Three randomised methods are compared. Numerical experiments in idealized systems show that the resulting LMPs perform better than the existing LMPs. Using these methods may allow more efficient and robust implementations of incremental weak constraint 4D-Var.
Using a high degree of parallelism is essential to perform data assimilation efficiently. The state formulation of the incremental weak constraint four-dimensional variational data assimilation method allows parallel calculations in the time dimensio
A randomised trapezoidal quadrature rule is proposed for continuous functions which enjoys less regularity than commonly required. Indeed, we consider functions in some fractional Sobolev space. Various error bounds for this randomised rule are estab
In this paper, we develop an iterative scheme to construct multiscale basis functions within the framework of the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) for the mixed formulation. The iterative procedur
Using the framework of operator or Calderon preconditioning, uniform preconditioners are constructed for elliptic operators discretized with continuous finite (or boundary) elements. The preconditioners are constructed as the composition of an opposi
Stable and accurate modeling of thin shells requires proper enforcement of all types of boundary conditions. Unfortunately, for Kirchhoff-Love shells, strong enforcement of Dirichlet boundary conditions is difficult because both functional and deriva