ﻻ يوجد ملخص باللغة العربية
In this paper we introduce the fractional dark energy model, in which the accelerated expansion of the Universe is driven by a nonrelativistic gas (composed by either fermions or bosons) with a noncanonical kinetic term. The kinetic energy is inversely proportional to the cube of the absolute value of the momentum for a fluid with an equation of state parameter equal to minus one, and whose corresponding energy density mimics the one of the cosmological constant. In the general case, the dark energy equation of state parameter (times three) is precisely the exponent of the momentum in the kinetic term. We show that this inverse momentum operator appears in fractional quantum mechanics and it is the inverse of the Riesz fractional derivative. The observed vacuum energy can be obtained through the integral of the Fermi-Dirac (or Bose-Einstein) distribution and the lowest allowed energy of the particles. Finally, a possible thermal production and fate of fractional dark energy is investigated.
We explain dark energy with equipartition theorem in string landscape.
In this paper we study the evolution of cosmological perturbations in the presence of dynamical dark energy, and revisit the issue of dark energy perturbations. For a generally parameterized equation of state (EoS) such as w_D(z) = w_0+w_1frac{z}{1+z
We study a phenomenological dark energy model which is rooted in the Veneziano ghost of QCD. In this dark energy model, the energy density of dark energy is proportional to Hubble parameter and the proportional coefficient is of the order $Lambda^3_{
We study the decay of gravitational waves into dark energy fluctuations $pi$, through the processes $gamma to pipi$ and $gamma to gamma pi$, made possible by the spontaneous breaking of Lorentz invariance. Within the EFT of Dark Energy (or Horndeski/
An extension to the Einstein-Cartan (EC) action is discussed in terms of cosmological solutions. The torsion incorporated in the EC Lagrangian is assumed to be totally anti-symmetric, and written by of a vector $S^mu$. Then this torsion model, compli