ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid-order topological insulators in a phononic crystal

82   0   0.0 ( 0 )
 نشر من قبل Weiyin Deng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological phases, including the conventional first-order and higher-order topological insulators and semimetals, have emerged as a thriving topic in the fields of condensed-matter physics and material science. Usually, a topological insulator is characterized by a fixed order topological invariant and exhibits associated bulk-boundary correspondence. Here, we realize a new type of topological insulator in a bilayer phononic crystal, which hosts simultaneously the first-order and second-order topologies, referred here as the hybrid-order topological insulator. The one-dimensional gapless helical edge states, and zero-dimensional corner states coexist in the same system. The new hybrid-order topological phase may produce novel applications in topological acoustic devices.



قيم البحث

اقرأ أيضاً

Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional to pological insulators to systems that host no gapless surface states, but exhibit topologically protected gapless hinge states. Their topological character is protected by spatio-temporal symmetries, of which we present two cases: (1) Chiral higher-order topological insulators protected by the combination of time-reversal and a four-fold rotation symmetry. Their hinge states are chiral modes and the bulk topology is $mathbb{Z}_2$-classified. (2) Helical higher-order topological insulators protected by time-reversal and mirror symmetries. Their hinge states come in Kramers pairs and the bulk topology is $mathbb{Z}$-classified. We provide the topological invariants for both cases. Furthermore we show that SnTe as well as surface-modified Bi$_2$TeI, BiSe, and BiTe are helical higher-order topological insulators and propose a realistic experimental setup to detect the hinge states.
72 - Y. Otaki , T. Fukui 2019
Two-dimensional (2D) generalization of the Su-Schriffer-Heeger (SSH) model serves as a platform for exploring higher-order topological insulators (HOTI). We investigate this model in a magnetic field which interpolates two models studied so far with zero flux and $pi$ flux per plaquette. We show that in the Hofstadter butterfly there appears a wide gap around the $pi$ flux, which belongs to the same HOTI discovered by Benalcazar-Bernevig-Hughes (BBH). It turns out that in a weak field regime HOTI could exist even within a small gap disconnected from the wider gap around $pi$ flux. To characterize HOTI, we employ the entanglement polarization (eP) technique which is useful even if the basic four bands split into many Landau levels under a magnetic field.
374 - Z.-X. Li , Yunshan Cao , Peng Yan 2019
Pursuing topological phase and matter in a variety of systems is one central issue in current physical sciences and engineering. Motivated by the recent experimental observation of corner states in acoustic and photonic structures, we theoretically s tudy the dipolar-coupled gyration motion of magnetic solitons on the two-dimensional breathing kagome lattice. We calculate the phase diagram and predict both the Tamm-Shockley edge modes and the second-order corner states when the ratio between alternate lattice constants is greater than a critical value. We show that the emerging corner states are topologically robust against both structure defects and moderate disorders. Micromagnetic simulations are implemented to verify the theoretical predictions with an excellent agreement. Our results pave the way for investigating higher-order topological insulators based on magnetic solitons.
104 - Yan-Bin Yang , Kai Li , L.-M. Duan 2020
We study disorder effects in a two-dimensional system with chiral symmetry and find that disorder can induce a quadrupole topological insulating phase (a higher-order topological phase with quadrupole moments) from a topologically trivial phase. Thei r topological properties manifest in a topological invariant defined based on effective boundary Hamiltonians, the quadrupole moment, and zero-energy corner modes. We find gapped and gapless topological phases and a Griffiths regime. In the gapless topological phase, all the states are localized, while in the Griffiths regime, the states at zero energy become multifractal. We further apply the self-consistent Born approximation to show that the induced topological phase arises from disorder renormalized masses. We finally introduce a practical experimental scheme with topoelectrical circuits where the predicted topological phenomena can be observed by impedance measurements. Our work opens the door to studying higher-order topological Anderson insulators and their localization properties.
Conventional topological insulators support boundary states that have one dimension lower than the bulk system that hosts them, and these states are topologically protected due to quantized bulk dipole moments. Recently, higher-order topological insu lators have been proposed as a way of realizing topological states that are two or more dimensions lower than the bulk, due to the quantization of bulk quadrupole or octupole moments. However, all these proposals as well as experimental realizations have been restricted to real-space dimensions. Here we construct photonic higher-order topological insulators (PHOTI) in synthetic dimensions. We show the emergence of a quadrupole PHOTI supporting topologically protected corner modes in an array of modulated photonic molecules with a synthetic frequency dimension, where each photonic molecule comprises two coupled rings. By changing the phase difference of the modulation between adjacently coupled photonic molecules, we predict a dynamical topological phase transition in the PHOTI. Furthermore, we show that the concept of synthetic dimensions can be exploited to realize even higher-order multipole moments such as a 4th order hexadecapole (16-pole) insulator, supporting 0D corner modes in a 4D hypercubic synthetic lattice that cannot be realized in real-space lattices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا