ﻻ يوجد ملخص باللغة العربية
Two-dimensional (2D) generalization of the Su-Schriffer-Heeger (SSH) model serves as a platform for exploring higher-order topological insulators (HOTI). We investigate this model in a magnetic field which interpolates two models studied so far with zero flux and $pi$ flux per plaquette. We show that in the Hofstadter butterfly there appears a wide gap around the $pi$ flux, which belongs to the same HOTI discovered by Benalcazar-Bernevig-Hughes (BBH). It turns out that in a weak field regime HOTI could exist even within a small gap disconnected from the wider gap around $pi$ flux. To characterize HOTI, we employ the entanglement polarization (eP) technique which is useful even if the basic four bands split into many Landau levels under a magnetic field.
Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional to
Pursuing topological phase and matter in a variety of systems is one central issue in current physical sciences and engineering. Motivated by the recent experimental observation of corner states in acoustic and photonic structures, we theoretically s
We study disorder effects in a two-dimensional system with chiral symmetry and find that disorder can induce a quadrupole topological insulating phase (a higher-order topological phase with quadrupole moments) from a topologically trivial phase. Thei
Conventional topological insulators support boundary states that have one dimension lower than the bulk system that hosts them, and these states are topologically protected due to quantized bulk dipole moments. Recently, higher-order topological insu
The disorder effects on higher-order topological phases in periodic systems have attracted much attention. However, in aperiodic systems such as quasicrystalline systems, the interplay between disorder and higher-order topology is still unclear. In t