ﻻ يوجد ملخص باللغة العربية
Pursuing topological phase and matter in a variety of systems is one central issue in current physical sciences and engineering. Motivated by the recent experimental observation of corner states in acoustic and photonic structures, we theoretically study the dipolar-coupled gyration motion of magnetic solitons on the two-dimensional breathing kagome lattice. We calculate the phase diagram and predict both the Tamm-Shockley edge modes and the second-order corner states when the ratio between alternate lattice constants is greater than a critical value. We show that the emerging corner states are topologically robust against both structure defects and moderate disorders. Micromagnetic simulations are implemented to verify the theoretical predictions with an excellent agreement. Our results pave the way for investigating higher-order topological insulators based on magnetic solitons.
Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional to
We study disorder effects in a two-dimensional system with chiral symmetry and find that disorder can induce a quadrupole topological insulating phase (a higher-order topological phase with quadrupole moments) from a topologically trivial phase. Thei
Conventional topological insulators support boundary states that have one dimension lower than the bulk system that hosts them, and these states are topologically protected due to quantized bulk dipole moments. Recently, higher-order topological insu
The disorder effects on higher-order topological phases in periodic systems have attracted much attention. However, in aperiodic systems such as quasicrystalline systems, the interplay between disorder and higher-order topology is still unclear. In t
We propose a versatile framework to dynamically generate Floquet higher-order topological insulators by multi-step driving of topologically trivial Hamiltonians. Two analytically solvable examples are used to illustrate this procedure to yield Floque