ﻻ يوجد ملخص باللغة العربية
Bulk-boundary correspondence is the cornerstone of topological physics. In some non-Hermitian topological system this fundamental relation is broken in the sense that the topological number calculated for the Bloch energy band under the periodic boundary condition fails to reproduce the boundary properties under the open boundary. To restore the bulk-boundary correspondence in such non-Hermitian systems a framework beyond the Bloch band theory is needed. We develop a non-Hermitian Bloch band theory based on a modified periodic boundary condition that allows a proper description of the bulk of a non-Hermitian topological insulator in a manner consistent with its boundary properties. Taking a non-Hermitian version of the Su-Schrieffer-Heeger model as an example, we demonstrate our scenario, in which the concept of bulk-boundary correspondence is naturally generalized to non-Hermitian topological systems.
We provide a systematic and self-consistent method to calculate the generalized Brillouin Zone (GBZ) analytically in one dimensional non-Hermitian systems, which helps us to understand the non-Hermitian bulk-boundary correspondence. In general, a n-b
A modified periodic boundary condition adequate for non-hermitian topological systems is proposed. Under this boundary condition a topological number characterizing the system is defined in the same way as in the corresponding hermitian system and he
Bulk-boundary correspondence, connecting the bulk topology and the edge states, is an essential principle of the topological phases. However, the bulk-boundary correspondence is broken down in general non-Hermitian systems. In this paper, we construc
Bulk-boundary correspondence, a central principle in topological matter relating bulk topological invariants to edge states, breaks down in a generic class of non-Hermitian systems that have so far eluded experimental effort. Here we theoretically pr
We consider a 3-dimensional (3D) non-Hermitian exceptional line semimetal model and take open boundary conditions in x, y, and z directions separately. In each case, we calculate the parameter regions where the bulk-boundary correspondence is broken.