ﻻ يوجد ملخص باللغة العربية
We consider a 3-dimensional (3D) non-Hermitian exceptional line semimetal model and take open boundary conditions in x, y, and z directions separately. In each case, we calculate the parameter regions where the bulk-boundary correspondence is broken. The breakdown of the bulk-boundary correspondence is manifested by the deviation from unit circles of generalized Brillouin zones (GBZ) and the discrepancy between spectra calculated with open boundary conditions (OBC) and periodic boundary conditions (PBC). The consistency between OBC and PBC spectra can be recovered if the PBC spectra are calculated with GBZs. We use both unit-circle Brillouin zones (BZ) and GBZs to plot the topological phase diagrams. The systematic analysis of the differences between the two phase diagrams suggests that it is necessary to use GBZ to characterize the bulk-boundary correspondence of non-Hermitian models.
We study a new class of non-Hermitian topological phases in three dimension in the absence of any symmetry, where the topological robust band degeneracies are Hopf-link exceptional lines. As a concrete example, we investigate the non-Hermitian band s
Bulk-boundary correspondence, a central principle in topological matter relating bulk topological invariants to edge states, breaks down in a generic class of non-Hermitian systems that have so far eluded experimental effort. Here we theoretically pr
Bulk-boundary correspondence, connecting the bulk topology and the edge states, is an essential principle of the topological phases. However, the bulk-boundary correspondence is broken down in general non-Hermitian systems. In this paper, we construc
We provide a systematic and self-consistent method to calculate the generalized Brillouin Zone (GBZ) analytically in one dimensional non-Hermitian systems, which helps us to understand the non-Hermitian bulk-boundary correspondence. In general, a n-b
Bulk-boundary correspondence is the cornerstone of topological physics. In some non-Hermitian topological system this fundamental relation is broken in the sense that the topological number calculated for the Bloch energy band under the periodic boun