ﻻ يوجد ملخص باللغة العربية
Bulk-boundary correspondence, connecting the bulk topology and the edge states, is an essential principle of the topological phases. However, the bulk-boundary correspondence is broken down in general non-Hermitian systems. In this paper, we construct one-dimensional non-Hermitian Su-Schrieffer-Heeger model with periodic driving that exhibits non-Hermitian skin effect: all the eigenstates are localized at the boundary of the systems, whether the bulk states or the zero and the $pi$ modes. To capture the topological properties, the non-Bloch winding numbers are defined by the non-Bloch periodized evolution operators based on the generalized Brillouin zone. Furthermore, the non-Hermitian bulk-boundary correspondence is established: the non-Bloch winding numbers ($W_{0,pi}$) characterize the edge states with quasienergies $epsilon=0, pi$. In our non-Hermitian system, a novel phenomenon can emerge that the robust edge states can appear even when the Floquet bands are topological trivial with zero non-Bloch band invariant, which is defined in terms of the non-Bloch effective Hamiltonian. We also show that the relation between the non-Bloch winding numbers ($W_{0,pi}$) and the non-Bloch band invariant ($mathcal{W}$): $mathcal{W}= W_{0}- W_{pi}$.
Bulk-boundary correspondence, a central principle in topological matter relating bulk topological invariants to edge states, breaks down in a generic class of non-Hermitian systems that have so far eluded experimental effort. Here we theoretically pr
Bulk-boundary correspondence is the cornerstone of topological physics. In some non-Hermitian topological system this fundamental relation is broken in the sense that the topological number calculated for the Bloch energy band under the periodic boun
We consider a 3-dimensional (3D) non-Hermitian exceptional line semimetal model and take open boundary conditions in x, y, and z directions separately. In each case, we calculate the parameter regions where the bulk-boundary correspondence is broken.
We provide a systematic and self-consistent method to calculate the generalized Brillouin Zone (GBZ) analytically in one dimensional non-Hermitian systems, which helps us to understand the non-Hermitian bulk-boundary correspondence. In general, a n-b
The generalized Brillouin zone (GBZ), which is the core concept of the non-Bloch band theory to rebuild the bulk boundary correspondence in the non-Hermitian topology, appears as a closed loop generally. In this work, we find that even if the GBZ its