ﻻ يوجد ملخص باللغة العربية
This paper presents objective priors for robust Bayesian estimation against outliers based on divergences. The minimum $gamma$-divergence estimator is well-known to work well estimation against heavy contamination. The robust Bayesian methods by using quasi-posterior distributions based on divergences have been also proposed in recent years. In objective Bayesian framework, the selection of default prior distributions under such quasi-posterior distributions is an important problem. In this study, we provide some properties of reference and moment matching priors under the quasi-posterior distribution based on the $gamma$-divergence. In particular, we show that the proposed priors are approximately robust under the condition on the contamination distribution without assuming any conditions on the contamination ratio. Some simulation studies are also presented.
In this paper, we consider Bayesian variable selection problem of linear regression model with global-local shrinkage priors on the regression coefficients. We propose a variable selection procedure that select a variable if the ratio of the posterio
If we have an unbiased estimate of some parameter of interest, then its absolute value is positively biased for the absolute value of the parameter. This bias is large when the signal-to-noise ratio (SNR) is small, and it becomes even larger when we
In this paper, we introduce a new methodology for Bayesian variable selection in linear regression that is independent of the traditional indicator method. A diagonal matrix $mathbf{G}$ is introduced to the prior of the coefficient vector $boldsymbol
A local projection is a statistical framework that accounts for the relationship between an exogenous variable and an endogenous variable, measured at different time points. Local projections are often applied in impulse response analyses and direct
An important task in building regression models is to decide which regressors should be included in the final model. In a Bayesian approach, variable selection can be performed using mixture priors with a spike and a slab component for the effects su