ﻻ يوجد ملخص باللغة العربية
If we have an unbiased estimate of some parameter of interest, then its absolute value is positively biased for the absolute value of the parameter. This bias is large when the signal-to-noise ratio (SNR) is small, and it becomes even larger when we condition on statistical significance; the winners curse. This is a frequentist motivation for regularization. To determine a suitable amount of shrinkage, we propose to estimate the distribution of the SNR from a large collection or corpus of similar studies and use this as a prior distribution. The wider the scope of the corpus, the less informative the prior, but a wider scope does not necessarily result in a more diffuse prior. We show that the estimation of the prior simplifies if we require that posterior inference is equivariant under linear transformations of the data. We demonstrate our approach with corpora of 86 replication studies from psychology and 178 phase 3 clinical trials. Our suggestion is not intended to be a replacement for a prior based on full information about a particular problem; rather, it represents a familywise choice that should yield better long-term properties than the current default uniform prior, which has led to systematic overestimates of effect sizes and a replication crisis when these inflated estimates have not shown up in later studies.
This paper presents objective priors for robust Bayesian estimation against outliers based on divergences. The minimum $gamma$-divergence estimator is well-known to work well estimation against heavy contamination. The robust Bayesian methods by usin
Encoding domain knowledge into the prior over the high-dimensional weight space of a neural network is challenging but essential in applications with limited data and weak signals. Two types of domain knowledge are commonly available in scientific ap
While mixtures of Gaussian distributions have been studied for more than a century (Pearson, 1894), the construction of a reference Bayesian analysis of those models still remains unsolved, with a general prohibition of the usage of improper priors (
The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection-reaction-diffusion equation that exhibits both paraboli
Suppose that a target function is monotonic, namely, weakly increasing, and an original estimate of the target function is available, which is not weakly increasing. Many common estimation methods used in statistics produce such estimates. We show th