ﻻ يوجد ملخص باللغة العربية
A local projection is a statistical framework that accounts for the relationship between an exogenous variable and an endogenous variable, measured at different time points. Local projections are often applied in impulse response analyses and direct forecasting. While local projections are becoming increasingly popular because of their robustness to misspecification and their flexibility, they are less statistically efficient than standard methods, such as vector autoregression. In this study, we seek to improve the statistical efficiency of local projections by developing a fully Bayesian approach that can be used to estimate local projections using roughness penalty priors. By incorporating such prior-induced smoothness, we can use information contained in successive observations to enhance the statistical efficiency of an inference. We apply the proposed approach to an analysis of monetary policy in the United States, showing that the roughness penalty priors successfully estimate the impulse response functions and improve the predictive accuracy of local projections.
In this paper, we consider Bayesian variable selection problem of linear regression model with global-local shrinkage priors on the regression coefficients. We propose a variable selection procedure that select a variable if the ratio of the posterio
Bayesian approaches are appealing for constrained inference problems in allowing a probabilistic characterization of uncertainty, while providing a computational machinery for incorporating complex constraints in hierarchical models. However, the usu
This paper presents objective priors for robust Bayesian estimation against outliers based on divergences. The minimum $gamma$-divergence estimator is well-known to work well estimation against heavy contamination. The robust Bayesian methods by usin
There is a wide range of applications where the local extrema of a function are the key quantity of interest. However, there is surprisingly little work on methods to infer local extrema with uncertainty quantification in the presence of noise. By vi
In this paper, we introduce a new methodology for Bayesian variable selection in linear regression that is independent of the traditional indicator method. A diagonal matrix $mathbf{G}$ is introduced to the prior of the coefficient vector $boldsymbol