ﻻ يوجد ملخص باللغة العربية
With the advent of huges volumes of data produced in the form of fast streams, real-time machine learning has become a challenge of relevance emerging in a plethora of real-world applications. Processing such fast streams often demands high memory and processing resources. In addition, they can be affected by non-stationary phenomena (concept drift), by which learning methods have to detect changes in the distribution of streaming data, and adapt to these evolving conditions. A lack of efficient and scalable solutions is particularly noted in real-time scenarios where computing resources are severely constrained, as it occurs in networks of small, numerous, interconnected processing units (such as the so-called Smart Dust, Utility Fog, or Swarm Robotics paradigms). In this work we propose LUNAR, a streamified version of cellular automata devised to successfully meet the aforementioned requirements. It is able to act as a real incremental learner while adapting to drifting conditions. Extensive simulations with synthetic and real data will provide evidence of its competitive behavior in terms of classification performance when compared to long-established and successful online learning methods.
The complexity of cellular automata is traditionally measured by their computational capacity. However, it is difficult to choose a challenging set of computational tasks suitable for the parallel nature of such systems. We study the ability of autom
This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded
A generalized set of Clifford cellular automata, which includes all Clifford cellular automata, result from the quantization of a lattice system where on each site of the lattice one has a $2k$-dimensional torus phase space. The dynamics is a linear
Coronavirus disease (COVID-19) which is caused by SARS-COV2 has become a pandemic. This disease is highly infectious and potentially fatal, causing a global public health concern. To contain the spread of COVID-19, governments are adopting nationwide
We numerically study the dynamics of elementary 1D cellular automata (CA), where the binary state $sigma_i(t) in {0,1}$ of a cell $i$ does not only depend on the states in its local neighborhood at time $t-1$, but also on the memory of its own past s