ﻻ يوجد ملخص باللغة العربية
A generalized set of Clifford cellular automata, which includes all Clifford cellular automata, result from the quantization of a lattice system where on each site of the lattice one has a $2k$-dimensional torus phase space. The dynamics is a linear map in the torus variables and it is also local: the evolution depends only on variables in some region around the original lattice site. Moreover it preserves the symplectic structure. These are classified by $2ktimes 2k$ matrices with entries in Laurent polynomials with integer coefficients in a set of additional formal variables. These can lead to fractal behavior in the evolution of the generators of the quantum algebra. Fractal behavior leads to non-trivial Lyapunov exponents of the original linear dynamical system. The proof uses Fourier analysis on the characteristic polynomial of these matrices.
We numerically study the dynamics of elementary 1D cellular automata (CA), where the binary state $sigma_i(t) in {0,1}$ of a cell $i$ does not only depend on the states in its local neighborhood at time $t-1$, but also on the memory of its own past s
It is shown how a Doubly-Special Relativity model can emerge from a quantum cellular automaton description of the evolution of countably many interacting quantum systems. We consider a one-dimensional automaton that spawns the Dirac evolution in the
We construct models hosting classical fractal spin liquids on two realistic three-dimensional (3D) lattices of corner-sharing triangles: trillium and hyperhyperkagome (HHK). Both models involve the same form of three-spin Ising interactions on triang
We study matrix product unitary operators (MPUs) for fermionic one-dimensional (1D) chains. In stark contrast with the case of 1D qudit systems, we show that (i) fermionic MPUs do not necessarily feature a strict causal cone and (ii) not all fermioni
The complexity of cellular automata is traditionally measured by their computational capacity. However, it is difficult to choose a challenging set of computational tasks suitable for the parallel nature of such systems. We study the ability of autom