ﻻ يوجد ملخص باللغة العربية
Program synthesis has emerged as a successful approach to the image parsing task. Most prior works rely on a two-step scheme involving supervised pretraining of a Seq2Seq model with synthetic programs followed by reinforcement learning (RL) for fine-tuning with real reference images. Fully unsupervised approaches promise to train the model directly on the target images without requiring curated pretraining datasets. However, they struggle with the inherent sparsity of meaningful programs in the search space. In this paper, we present the first unsupervised algorithm capable of parsing constructive solid geometry (CSG) images into context-free grammar (CFG) without pretraining via non-differentiable renderer. To tackle the emph{non-Markovian} sparse reward problem, we combine three key ingredients -- (i) a grammar-encoded tree LSTM ensuring program validity (ii) entropy regularization and (iii) sampling without replacement from the CFG syntax tree. Empirically, our algorithm recovers meaningful programs in large search spaces (up to $3.8 times 10^{28}$). Further, even though our approach is fully unsupervised, it generalizes better than supervised methods on the synthetic 2D CSG dataset. On the 2D computer aided design (CAD) dataset, our approach significantly outperforms the supervised pretrained model and is competitive to the refined model.
We derive an unbiased estimator for expectations over discrete random variables based on sampling without replacement, which reduces variance as it avoids duplicate samples. We show that our estimator can be derived as the Rao-Blackwellization of thr
Thompson Sampling has generated significant interest due to its better empirical performance than upper confidence bound based algorithms. In this paper, we study Thompson Sampling based algorithm for Unsupervised Sequential Selection (USS) problem.
Star sampling (SS) is a random sampling procedure on a graph wherein each sample consists of a randomly selected vertex (the star center) and its one-hop neighbors (the star endpoints). We consider the use of star sampling to find any member of an ar
Neural inductive program synthesis is a task generating instructions that can produce desired outputs from given inputs. In this paper, we focus on the generation of a chunk of assembly code that can be executed to match a state change inside the CPU
Star sampling (SS) is a random sampling procedure on a graph wherein each sample consists of a randomly selected vertex (the star center) and its (one-hop) neighbors (the star points). We consider the use of SS to find any member of a target set of v