ﻻ يوجد ملخص باللغة العربية
Star sampling (SS) is a random sampling procedure on a graph wherein each sample consists of a randomly selected vertex (the star center) and its one-hop neighbors (the star endpoints). We consider the use of star sampling to find any member of an arbitrary target set of vertices in a graph, where the figure of merit (cost) is either the expected number of samples (unit cost) or the expected number of star centers plus star endpoints (linear cost) until a vertex in the target set is encountered, either as a star center or as a star point. We analyze this performance measure on three related star sampling paradigms: SS with replacement (SSR), SS without center replacement (SSC), and SS without star replacement (SSS). We derive exact and approximate expressions for the expected unit and linear costs of SSR, SSC, and SSS on Erdos-Renyi (ER) graphs. Our results show there is i) little difference in unit cost, but ii) significant difference in linear cost, across the three paradigms. Although our results are derived for ER graphs, experiments on real-world graphs suggest our performance expressions are reasonably accurate for non-ER graphs.
Star sampling (SS) is a random sampling procedure on a graph wherein each sample consists of a randomly selected vertex (the star center) and its (one-hop) neighbors (the star points). We consider the use of SS to find any member of a target set of v
Program synthesis has emerged as a successful approach to the image parsing task. Most prior works rely on a two-step scheme involving supervised pretraining of a Seq2Seq model with synthetic programs followed by reinforcement learning (RL) for fine-
We derive an unbiased estimator for expectations over discrete random variables based on sampling without replacement, which reduces variance as it avoids duplicate samples. We show that our estimator can be derived as the Rao-Blackwellization of thr
We prove that any implementation of pivotal sampling is more efficient than multinomial sampling. This property entails the weak consistency of the Horvitz-Thompson estimator and the existence of a conservative variance estimator. A small simulation study supports our findings.
Fast and accurate performance analysis techniques are essential in early design space exploration and pre-silicon evaluations, including software eco-system development. In particular, on-chip communication continues to play an increasingly important