ﻻ يوجد ملخص باللغة العربية
We derive the primordial power spectra and spectral indexes of the density fluctuations and gravitational waves in the framework of loop quantum cosmology (LQC) with holonomy and inverse-volume corrections, by using the uniform asymptotic approximation method to its third-order, at which the upper error bounds are $lesssim 0.15%$, and accurate enough for the current and forthcoming cosmological observations. Then, using the Planck, BAO and SN data we obtain the tightest constraints on quantum gravitational effects from LQC corrections, and find that such effects could be well within the detection of the current and forthcoming cosmological observations.
We investigate the gravitational particle production in the bounce phase of Loop Quantum Cosmology (LQC). We perform both analytical and numerical analysis of the particle production process in a LQC scenario with Bunch-Davies vacuum initial conditio
We study the tensor modes of linear metric perturbations within an effective framework of loop quantum cosmology. After a review of inverse-volume and holonomy corrections in the background equations of motion, we solve the linearized tensor modes eq
In this Essay we investigate the observational signatures of Loop Quantum Cosmology (LQC) in the CMB data. First, we concentrate on the dynamics of LQC and we provide the basic cosmological functions. We then obtain the power spectrum of scalar and t
In this work, we revisit the dynamics of pre-inflationary universe with a family of $alpha-$attractor potentials, in the framework of loop quantum cosmology, in which the big bang singularity is generically resolved purely with quantum geometric effe
Warm inflation is analyzed in the context of Loop Quantum Cosmology (LQC). The bounce in LQC provides a mean through which a Liouville measure can be defined, which has been used previously to characterize the a priori probability for inflation in LQ