ﻻ يوجد ملخص باللغة العربية
For a bounded open set $Omegasubsetmathbb R^3$ we consider the minimization problem $$ S(a+epsilon V) = inf_{0 otequiv uin H^1_0(Omega)} frac{int_Omega (| abla u|^2+ (a+epsilon V) |u|^2),dx}{(int_Omega u^6,dx)^{1/3}} $$ involving the critical Sobolev exponent. The function $a$ is assumed to be critical in the sense of Hebey and Vaugon. Under certain assumptions on $a$ and $V$ we compute the asymptotics of $S(a+epsilon V)-S$ as $epsilonto 0+$, where $S$ is the Sobolev constant. (Almost) minimizers concentrate at a point in the zero set of the Robin function corresponding to $a$ and we determine the location of the concentration point within that set. We also show that our assumptions are almost necessary to have $S(a+epsilon V)<S$ for all sufficiently small $epsilon>0$.
For dimensions $N geq 4$, we consider the Brezis-Nirenberg variational problem of finding [ S(epsilon V) := inf_{0 otequiv uin H^1_0(Omega)} frac{int_Omega | abla u|^2 , dx +epsilon int_Omega V, |u|^2 , dx}{left(int_Omega |u|^q , dx right)^{2/q}}, ]
The present paper deals with a parametrized Kirchhoff type problem involving a critical nonlinearity in high dimension. Existence, non existence and multiplicity of solutions are obtained under the effect of a subcritical perturbation by combining va
The main purpose of this paper is to establish the existence, nonexistence and symmetry of nontrivial solutions to the higher order Brezis-Nirenberg problems associated with the GJMS operators $P_k$ on bounded domains in the hyperbolic space $mathbb{
We study the problem of prescribing $sigma_k$-curvature for a conformal metric on the standard sphere $mathbb{S}^n$ with $2 leq k < n/2$ and $n geq 5$ in axisymmetry. Compactness, non-compactness, existence and non-existence results are proved in ter
We give blow-up analysis for a Brezis-Merles problem on the boundary. Also we give a proof of a compactness result with Lipschitz condition and weaker assumption on the regularity of the domain (smooth domain or $ C^{2,alpha} $ domain).