ﻻ يوجد ملخص باللغة العربية
We study the problem of prescribing $sigma_k$-curvature for a conformal metric on the standard sphere $mathbb{S}^n$ with $2 leq k < n/2$ and $n geq 5$ in axisymmetry. Compactness, non-compactness, existence and non-existence results are proved in terms of the behaviors of the prescribed curvature function $K$ near the north and the south poles. For example, consider the case when the north and the south poles are local maximum points of $K$ of flatness order $beta in [2,n)$. We prove among other things the following statements. (1) When $beta>n-2k$, the solution set is compact, has a nonzero total degree counting and is therefore non-empty. (2) When $ beta = n-2k$, there is an explicit positive constant $C(K)$ associated with $K$. If $C(K)>1$, the solution set is compact with a nonzero total degree counting and is therefore non-empty. If $C(K)<1$, the solution set is compact but the total degree counting is $0$, and the solution set is sometimes empty and sometimes non-empty. (3) When $frac{2}{n-2k}le beta < n-2k$, the solution set is compact, but the total degree counting is zero, and the solution set is sometimes empty and sometimes non-empty. (4) When $beta < frac{n-2k}{2}$, there exists $K$ for which there exists a blow-up sequence of solutions with unbounded energy. In this same range of $beta$, there exists also some $K$ for which the solution set is empty.
The Gursky-Streets equation are introduced as the geodesic equation of a metric structure in conformal geometry. This geometric structure has played a substantial role in the proof of uniqueness of $sigma_2$ Yamabe problem in dimension four. In this
We establish theorems on the existence and compactness of solutions to the $sigma_2$-Nirenberg problem on the standard sphere $mathbb S^2$. A first significant ingredient, a Liouville type theorem for the associated fully nonlinear Mobius invariant e
For a bounded open set $Omegasubsetmathbb R^3$ we consider the minimization problem $$ S(a+epsilon V) = inf_{0 otequiv uin H^1_0(Omega)} frac{int_Omega (| abla u|^2+ (a+epsilon V) |u|^2),dx}{(int_Omega u^6,dx)^{1/3}} $$ involving the critical Sobolev
We consider positive critical points of Caffarelli-Kohn-Nirenberg inequalities and prove a Liouville type result which allows us to give a complete classification of the solutions in a certain range of parameters, providing a symmetry result for posi
For dimensions $N geq 4$, we consider the Brezis-Nirenberg variational problem of finding [ S(epsilon V) := inf_{0 otequiv uin H^1_0(Omega)} frac{int_Omega | abla u|^2 , dx +epsilon int_Omega V, |u|^2 , dx}{left(int_Omega |u|^q , dx right)^{2/q}}, ]