ترغب بنشر مسار تعليمي؟ اضغط هنا

The axisymmetric $sigma_k$-Nirenberg problem

88   0   0.0 ( 0 )
 نشر من قبل Luc Nguyen
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of prescribing $sigma_k$-curvature for a conformal metric on the standard sphere $mathbb{S}^n$ with $2 leq k < n/2$ and $n geq 5$ in axisymmetry. Compactness, non-compactness, existence and non-existence results are proved in terms of the behaviors of the prescribed curvature function $K$ near the north and the south poles. For example, consider the case when the north and the south poles are local maximum points of $K$ of flatness order $beta in [2,n)$. We prove among other things the following statements. (1) When $beta>n-2k$, the solution set is compact, has a nonzero total degree counting and is therefore non-empty. (2) When $ beta = n-2k$, there is an explicit positive constant $C(K)$ associated with $K$. If $C(K)>1$, the solution set is compact with a nonzero total degree counting and is therefore non-empty. If $C(K)<1$, the solution set is compact but the total degree counting is $0$, and the solution set is sometimes empty and sometimes non-empty. (3) When $frac{2}{n-2k}le beta < n-2k$, the solution set is compact, but the total degree counting is zero, and the solution set is sometimes empty and sometimes non-empty. (4) When $beta < frac{n-2k}{2}$, there exists $K$ for which there exists a blow-up sequence of solutions with unbounded energy. In this same range of $beta$, there exists also some $K$ for which the solution set is empty.



قيم البحث

اقرأ أيضاً

91 - Weiyong He , Lu Xu , Mingbo Zhang 2019
The Gursky-Streets equation are introduced as the geodesic equation of a metric structure in conformal geometry. This geometric structure has played a substantial role in the proof of uniqueness of $sigma_2$ Yamabe problem in dimension four. In this paper we solve the Gursky-Streets equations with uniform $C^{1, 1}$ estimates for $2kleq n$. An important new ingredient is to show the concavity of the operator which holds for all $kleq n$. Our proof of the concavity heavily relies on Gardings theory of hyperbolic polynomials and results from the theory of real roots for (interlacing) polynomials. Together with this concavity, we are able to solve the equation with the uniform $C^{1, 1}$ emph{a priori estimates} for all the cases $ngeq 2k$. Moreover, we establish the uniqueness of the solution to the degenerate equations for the first time. As an application, we prove that if $kgeq 3$ and $M^{2k}$ is conformally flat, any solution solution of $sigma_k$ Yamabe problem is conformal diffeomorphic to the round sphere $S^{2k}$.
125 - YanYan Li , Han Lu , Siyuan Lu 2021
We establish theorems on the existence and compactness of solutions to the $sigma_2$-Nirenberg problem on the standard sphere $mathbb S^2$. A first significant ingredient, a Liouville type theorem for the associated fully nonlinear Mobius invariant e lliptic equations, was established in an earlier paper of ours. Our proof of the existence and compactness results requires a number of additional crucial ingredients which we prove in this paper: A Liouville type theorem for the associated fully nonlinear Mobius invariant degenerate elliptic equations, a priori estimates of first and second order derivatives of solutions to the $sigma_2$-Nirenberg problem, and a B^ocher type theorem for the associated fully nonlinear Mobius invariant elliptic equations. Given these results, we are able to complete a fine analysis of a sequence of blow-up solutions to the $sigma_2$-Nirenberg problem. In particular, we prove that there can be at most one blow-up point for such a blow-up sequence of solutions. This, together with a Kazdan-Warner type identity, allows us to prove $L^infty$ a priori estimates for solutions of the $sigma_2$-Nirenberg problem under some simple generic hypothesis. The higher derivative estimates then follow from classical estimates of Nirenberg and Schauder. In turn, the existence of solutions to the $sigma_2$-Nirenberg problem is obtained by an application of the by now standard degree theory for second order fully nonlinear elliptic operators.
For a bounded open set $Omegasubsetmathbb R^3$ we consider the minimization problem $$ S(a+epsilon V) = inf_{0 otequiv uin H^1_0(Omega)} frac{int_Omega (| abla u|^2+ (a+epsilon V) |u|^2),dx}{(int_Omega u^6,dx)^{1/3}} $$ involving the critical Sobolev exponent. The function $a$ is assumed to be critical in the sense of Hebey and Vaugon. Under certain assumptions on $a$ and $V$ we compute the asymptotics of $S(a+epsilon V)-S$ as $epsilonto 0+$, where $S$ is the Sobolev constant. (Almost) minimizers concentrate at a point in the zero set of the Robin function corresponding to $a$ and we determine the location of the concentration point within that set. We also show that our assumptions are almost necessary to have $S(a+epsilon V)<S$ for all sufficiently small $epsilon>0$.
We consider positive critical points of Caffarelli-Kohn-Nirenberg inequalities and prove a Liouville type result which allows us to give a complete classification of the solutions in a certain range of parameters, providing a symmetry result for posi tive solutions. The governing operator is a weighted $p$-Laplace operator, which we consider for a general $p in (1,d)$. For $p=2$, the symmetry breaking region for extremals of Caffarelli-Kohn-Nirenberg inequalities was completely characterized in [J. Dolbeault, M. Esteban, M. Loss, Invent. Math. 44 (2016)]. Our results extend this result to a general $p$ and are optimal in some cases.
For dimensions $N geq 4$, we consider the Brezis-Nirenberg variational problem of finding [ S(epsilon V) := inf_{0 otequiv uin H^1_0(Omega)} frac{int_Omega | abla u|^2 , dx +epsilon int_Omega V, |u|^2 , dx}{left(int_Omega |u|^q , dx right)^{2/q}}, ] where $q=frac{2N}{N-2}$ is the critical Sobolev exponent and $Omega subset mathbb{R}^N$ is a bounded open set. We compute the asymptotics of $S(0) - S(epsilon V)$ to leading order as $epsilon to 0+$. We give a precise description of the blow-up profile of (almost) minimizing sequences and, in particular, we characterize the concentration points as being extrema of a quotient involving the Robin function. This complements the results from our recent paper in the case $N = 3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا