ﻻ يوجد ملخص باللغة العربية
The main purpose of this paper is to establish the existence, nonexistence and symmetry of nontrivial solutions to the higher order Brezis-Nirenberg problems associated with the GJMS operators $P_k$ on bounded domains in the hyperbolic space $mathbb{H}^n$ and as well as on the entire hyperbolic space $mathbb{H}^n$. Among other techniques, one of our main novelties is to use crucially the Helgason-Fourier analysis on hyperbolic spaces and the higher order Hardy-Sobolev-Mazya inequalities and careful study of delicate properties of Greens functions of $P_k-lambda$ on hyperbolic spaces which are of independent interests in dealing with such problems. Such Greens functions allow us to obtain the integral representations of solutions and thus to avoid using the maximum principle to establish the symmetry of solutions.
For dimensions $N geq 4$, we consider the Brezis-Nirenberg variational problem of finding [ S(epsilon V) := inf_{0 otequiv uin H^1_0(Omega)} frac{int_Omega | abla u|^2 , dx +epsilon int_Omega V, |u|^2 , dx}{left(int_Omega |u|^q , dx right)^{2/q}}, ]
For a bounded open set $Omegasubsetmathbb R^3$ we consider the minimization problem $$ S(a+epsilon V) = inf_{0 otequiv uin H^1_0(Omega)} frac{int_Omega (| abla u|^2+ (a+epsilon V) |u|^2),dx}{(int_Omega u^6,dx)^{1/3}} $$ involving the critical Sobolev
The present paper deals with a parametrized Kirchhoff type problem involving a critical nonlinearity in high dimension. Existence, non existence and multiplicity of solutions are obtained under the effect of a subcritical perturbation by combining va
By using, among other things, the Fourier analysis techniques on hyperbolic and symmetric spaces, we establish the Hardy-Sobolev-Mazya inequalities for higher order derivatives on half spaces. The proof relies on a Hardy-Littlewood-Sobolev inequality
We establish necessary conditions for the existence of solutions to a class of semilinear hyperbolic problems on complete noncompact Riemannian manifolds, extending some nonexistence results for the wave operator with power nonlinearity on the whole