ﻻ يوجد ملخص باللغة العربية
We trained and evaluated a localization-based deep CNN for breast cancer screening exam classification on over 200,000 exams (over 1,000,000 images). Our model achieves an AUC of 0.919 in predicting malignancy in patients undergoing breast cancer screening, reducing the error rate of the baseline (Wu et al., 2019a) by 23%. In addition, the models generates bounding boxes for benign and malignant findings, providing interpretable predictions.
Background and Aim: Recently, deep learning using convolutional neural network has been used successfully to classify the images of breast cells accurately. However, the accuracy of manual classification of those histopathological images is comparati
Data scarcity and class imbalance are two fundamental challenges in many machine learning applications to healthcare. Breast cancer classification in mammography exemplifies these challenges, with a malignancy rate of around 0.5% in a screening popul
We present a deep convolutional neural network for breast cancer screening exam classification, trained and evaluated on over 200,000 exams (over 1,000,000 images). Our network achieves an AUC of 0.895 in predicting whether there is a cancer in the b
Deep neural networks (DNNs) show promise in breast cancer screening, but their robustness to input perturbations must be better understood before they can be clinically implemented. There exists extensive literature on this subject in the context of
Gastric cancer is one of the most common cancers, which ranks third among the leading causes of cancer death. Biopsy of gastric mucosa is a standard procedure in gastric cancer screening test. However, manual pathological inspection is labor-intensiv