ﻻ يوجد ملخص باللغة العربية
Background and Aim: Recently, deep learning using convolutional neural network has been used successfully to classify the images of breast cells accurately. However, the accuracy of manual classification of those histopathological images is comparatively low. This research aims to increase the accuracy of the classification of breast cancer images by utilizing a Patch-Based Classifier (PBC) along with deep learning architecture. Methodology: The proposed system consists of a Deep Convolutional Neural Network (DCNN) that helps in enhancing and increasing the accuracy of the classification process. This is done by the use of the Patch-based Classifier (PBC). CNN has completely different layers where images are first fed through convolutional layers using hyperbolic tangent function together with the max-pooling layer, drop out layers, and SoftMax function for classification. Further, the output obtained is fed to a patch-based classifier that consists of patch-wise classification output followed by majority voting. Results: The results are obtained throughout the classification stage for breast cancer images that are collected from breast-histology datasets. The proposed solution improves the accuracy of classification whether or not the images had normal, benign, in-situ, or invasive carcinoma from 87% to 94% with a decrease in processing time from 0.45 s to 0.2s on average. Conclusion: The proposed solution focused on increasing the accuracy of classifying cancer in the breast by enhancing the image contrast and reducing the vanishing gradient. Finally, this solution for the implementation of the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique and modified tangent function helps in increasing the accuracy.
We trained and evaluated a localization-based deep CNN for breast cancer screening exam classification on over 200,000 exams (over 1,000,000 images). Our model achieves an AUC of 0.919 in predicting malignancy in patients undergoing breast cancer scr
The International Symposium on Biomedical Imaging (ISBI) held a grand challenge to evaluate computational systems for the automated detection of metastatic breast cancer in whole slide images of sentinel lymph node biopsies. Our team won both competi
Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease brea
Microscopic examination of tissues or histopathology is one of the diagnostic procedures for detecting colorectal cancer. The pathologist involved in such an examination usually identifies tissue type based on texture analysis, especially focusing on
Breast cancer has become one of the most prevalent cancers by which people all over the world are affected and is posed serious threats to human beings, in a particular woman. In order to provide effective treatment or prevention of this cancer, dise