ﻻ يوجد ملخص باللغة العربية
Data scarcity and class imbalance are two fundamental challenges in many machine learning applications to healthcare. Breast cancer classification in mammography exemplifies these challenges, with a malignancy rate of around 0.5% in a screening population, which is compounded by the relatively small size of lesions (~1% of the image) in malignant cases. Simultaneously, the prevalence of screening mammography creates a potential abundance of non-cancer exams to use for training. Altogether, these characteristics lead to overfitting on cancer cases, while under-utilizing non-cancer data. Here, we present a novel generative adversarial network (GAN) model for data augmentation that can realistically synthesize and remove lesions on mammograms. With self-attention and semi-supervised learning components, the U-net-based architecture can generate high resolution (256x256px) outputs, as necessary for mammography. When augmenting the original training set with the GAN-generated samples, we find a significant improvement in malignancy classification performance on a test set of real mammogram patches. Overall, the empirical results of our algorithm and the relevance to other medical imaging paradigms point to potentially fruitful further applications.
Background and Aim: Recently, deep learning using convolutional neural network has been used successfully to classify the images of breast cells accurately. However, the accuracy of manual classification of those histopathological images is comparati
We trained and evaluated a localization-based deep CNN for breast cancer screening exam classification on over 200,000 exams (over 1,000,000 images). Our model achieves an AUC of 0.919 in predicting malignancy in patients undergoing breast cancer scr
Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease brea
Mammography remains the most prevalent imaging tool for early breast cancer screening. The language used to describe abnormalities in mammographic reports is based on the breast Imaging Reporting and Data System (BI-RADS). Assigning a correct BI-RADS
Accurate breast lesion risk estimation can significantly reduce unnecessary biopsies and help doctors decide optimal treatment plans. Most existing computer-aided systems rely solely on mammogram features to classify breast lesions. While this approa