ﻻ يوجد ملخص باللغة العربية
It is well known that when the geometry and/or coefficients allow stable trapped rays, the outgoing solution operator of the Helmholtz equation (a.k.a. the resolvent of the Laplacian) grows exponentially through a sequence of real frequencies tending to infinity. In this paper we show that, even in the presence of the strongest-possible trapping, if a set of frequencies of arbitrarily small measure is excluded, the Helmholtz solution operator grows at most polynomially as the frequency tends to infinity. One significant application of this result is in the convergence analysis of several numerical methods for solving the Helmholtz equation at high frequency that are based on a polynomial-growth assumption on the solution operator (e.g. $hp$-finite elements, $hp$-boundary elements, certain multiscale methods). The result of this paper shows that this assumption holds, even in the presence of the strongest-possible trapping, for most frequencies.
In this paper we prove the existence of weak solutions for a thermodynamically consistent phase-field model introduced in [26] in two and three dimensions of space. We use a notion of solution inspired by [18], where the pointwise internal energy bal
We study the interaction of a ground state with a class of trapping potentials. We track the precise asymptotic behavior of the solution if the interaction is weak, either because the ground state moves away from the potential or is very fast.
We establish weak-strong uniqueness and stability properties of renormalised solutions to a class of energy-reaction-diffusion systems, which genuinely feature cross-diffusion effects. The systems considered are motivated by thermodynamically consist
For the Helmholtz equation posed in the exterior of a Dirichlet obstacle, we prove that if there exists a family of quasimodes (as is the case when the exterior of the obstacle has stable trapped rays), then there exist near-zero eigenvalues of the s
We derive a weak-strong uniqueness principle for BV solutions to multiphase mean curvature flow of triple line clusters in three dimensions. Our proof is based on the explicit construction of a gradient-flow calibration in the sense of the recent wor