ترغب بنشر مسار تعليمي؟ اضغط هنا

For most frequencies, strong trapping has a weak effect in frequency-domain scattering

62   0   0.0 ( 0 )
 نشر من قبل Euan Spence
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that when the geometry and/or coefficients allow stable trapped rays, the outgoing solution operator of the Helmholtz equation (a.k.a. the resolvent of the Laplacian) grows exponentially through a sequence of real frequencies tending to infinity. In this paper we show that, even in the presence of the strongest-possible trapping, if a set of frequencies of arbitrarily small measure is excluded, the Helmholtz solution operator grows at most polynomially as the frequency tends to infinity. One significant application of this result is in the convergence analysis of several numerical methods for solving the Helmholtz equation at high frequency that are based on a polynomial-growth assumption on the solution operator (e.g. $hp$-finite elements, $hp$-boundary elements, certain multiscale methods). The result of this paper shows that this assumption holds, even in the presence of the strongest-possible trapping, for most frequencies.



قيم البحث

اقرأ أيضاً

In this paper we prove the existence of weak solutions for a thermodynamically consistent phase-field model introduced in [26] in two and three dimensions of space. We use a notion of solution inspired by [18], where the pointwise internal energy bal ance is replaced by the total energy inequality complemented with a weak form of the entropy inequality. Moreover, we prove existence of local-in-time strong solutions and, finally, we show weak-strong uniqueness of solutions, meaning that every weak solution coincides with a local strong solution emanating from the same initial data, as long as the latter exists.
We study the interaction of a ground state with a class of trapping potentials. We track the precise asymptotic behavior of the solution if the interaction is weak, either because the ground state moves away from the potential or is very fast.
89 - Katharina Hopf 2021
We establish weak-strong uniqueness and stability properties of renormalised solutions to a class of energy-reaction-diffusion systems, which genuinely feature cross-diffusion effects. The systems considered are motivated by thermodynamically consist ent models, and their formal entropy structure allows us to use as a key tool a suitably adjusted relative entropy method. Weak-strong uniqueness is obtained for general entropy-dissipating reactions without growth restrictions, and certain models with a non-integrable diffusive flux. The results also apply to a class of (isoenergetic) reaction-cross-diffusion systems.
For the Helmholtz equation posed in the exterior of a Dirichlet obstacle, we prove that if there exists a family of quasimodes (as is the case when the exterior of the obstacle has stable trapped rays), then there exist near-zero eigenvalues of the s tandard variational formulation of the exterior Dirichlet problem (recall that this formulation involves truncating the exterior domain and applying the exterior Dirichlet-to-Neumann map on the truncation boundary). Our motivation for proving this result is that a) the finite-element method for computing approximations to solutions of the Helmholtz equation is based on the standard variational formulation, and b) the location of eigenvalues, and especially near-zero ones, plays a key role in understanding how iterative solvers such as the generalised minimum residual method (GMRES) behave when used to solve linear systems, in particular those arising from the finite-element method. The result proved in this paper is thus the first step towards rigorously understanding how GMRES behaves when applied to discretisations of high-frequency Helmholtz problems under strong trapping (the subject of the companion paper [Marchand, Galkowski, Spence, Spence, 2021]).
We derive a weak-strong uniqueness principle for BV solutions to multiphase mean curvature flow of triple line clusters in three dimensions. Our proof is based on the explicit construction of a gradient-flow calibration in the sense of the recent wor k of Fischer et al. [arXiv:2003.05478] for any such cluster. This extends the two-dimensional construction to the three-dimensional case of surfaces meeting along triple junctions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا