ﻻ يوجد ملخص باللغة العربية
For the Helmholtz equation posed in the exterior of a Dirichlet obstacle, we prove that if there exists a family of quasimodes (as is the case when the exterior of the obstacle has stable trapped rays), then there exist near-zero eigenvalues of the standard variational formulation of the exterior Dirichlet problem (recall that this formulation involves truncating the exterior domain and applying the exterior Dirichlet-to-Neumann map on the truncation boundary). Our motivation for proving this result is that a) the finite-element method for computing approximations to solutions of the Helmholtz equation is based on the standard variational formulation, and b) the location of eigenvalues, and especially near-zero ones, plays a key role in understanding how iterative solvers such as the generalised minimum residual method (GMRES) behave when used to solve linear systems, in particular those arising from the finite-element method. The result proved in this paper is thus the first step towards rigorously understanding how GMRES behaves when applied to discretisations of high-frequency Helmholtz problems under strong trapping (the subject of the companion paper [Marchand, Galkowski, Spence, Spence, 2021]).
We study a commonly-used second-kind boundary-integral equation for solving the Helmholtz exterior Neumann problem at high frequency, where, writing $Gamma$ for the boundary of the obstacle, the relevant integral operators map $L^2(Gamma)$ to itself.
Over the last ten years, results from [Melenk-Sauter, 2010], [Melenk-Sauter, 2011], [Esterhazy-Melenk, 2012], and [Melenk-Parsania-Sauter, 2013] decomposing high-frequency Helmholtz solutions into low- and high-frequency components have had a large i
We consider GMRES applied to discretisations of the high-frequency Helmholtz equation with strong trapping; recall that in this situation the problem is exponentially ill-conditioned through an increasing sequence of frequencies. Under certain assump
We study the wave equation in the exterior of a bounded domain $K$ with dissipative boundary condition $partial_{ u} u - gamma(x) u = 0$ on the boundary $Gamma$ and $gamma(x) > 0.$ The solutions are described by a contraction semigroup $V(t) = e^{tG}
We describe the non-backtracking spectrum of a stochastic block model with connection probabilities $p_{mathrm{in}}, p_{mathrm{out}} = omega(log n)/n$. In this regime we answer a question posed in DallAmico and al. (2019) regarding the existence of a