ﻻ يوجد ملخص باللغة العربية
We derive a weak-strong uniqueness principle for BV solutions to multiphase mean curvature flow of triple line clusters in three dimensions. Our proof is based on the explicit construction of a gradient-flow calibration in the sense of the recent work of Fischer et al. [arXiv:2003.05478] for any such cluster. This extends the two-dimensional construction to the three-dimensional case of surfaces meeting along triple junctions.
We prove that in the absence of topological changes, the notion of BV solutions to planar multiphase mean curvature flow does not allow for a mechanism for (unphysical) non-uniqueness. Our approach is based on the local structure of the energy landsc
An existence and uniqueness result, up to fattening, for crystalline mean curvature flows with forcing and arbitrary (convex) mobilities, is proven. This is achieved by introducing a new notion of solution to the corresponding level set formulation.
We establish weak-strong uniqueness and stability properties of renormalised solutions to a class of energy-reaction-diffusion systems, which genuinely feature cross-diffusion effects. The systems considered are motivated by thermodynamically consist
We consider a variational scheme for the anisotropic (including crystalline) mean curvature flow of sets with strictly positive anisotropic mean curvature. We show that such condition is preserved by the scheme, and we prove the strict convergence in
In this paper we prove the existence of weak solutions for a thermodynamically consistent phase-field model introduced in [26] in two and three dimensions of space. We use a notion of solution inspired by [18], where the pointwise internal energy bal