ﻻ يوجد ملخص باللغة العربية
If the graviton is the only high spin particle present during inflation, then the form of the observable tensor three-point function is fixed by de Sitter symmetry at leading order in slow-roll, regardless of the theory, to be a linear combination of two possible shapes. This is because there are only a fixed number of possible on-shell cubic structures through which the graviton can self-interact. If additional massive spin-2 degrees of freedom are present, more cubic interaction structures are possible, including those containing interactions between the new fields and the graviton, and self-interactions of the new fields. We study, in a model-independent way, how these interactions can lead to new shapes for the tensor bispectrum. In general, these shapes cannot be computed analytically, but for the case where the only new field is a partially massless spin-2 field we give simple expressions. It is possible for the contribution from additional spin-2 fields to be larger than the intrinsic Einstein gravity bispectrum and provides a mechanism for enhancing the size of the graviton bispectrum relative to the graviton power spectrum.
We study the structure of multi-field inflation models where the primordial curvature perturbation is able to vigorously interact with an ultra-light isocurvature field -- a massless fluctuation orthogonal to the background inflationary trajectory in
We investigate the cosmology of SO(3)-invariant massive gravity with 5 degrees of freedom. In contrast with previous studies, we allow for a non-trivial fiducial metric, which can be justified by invoking, for example, a dilaton-like global symmetry.
We study ghost-free multimetric theories for $(N+1)$ tensor fields with a coupling to matter and maximal global symmetry group $S_Ntimes(Z_2)^N$. Their mass spectra contain a massless mode, the graviton, and $N$ massive spin-2 modes. One of the massi
The de Rham-Gabadadze-Tolley massive gravity admits pp-wave backgrounds on which linear fluctuations are shown to undergo time advances for all values of the parameters. The perturbations may propagate in closed time-like curves unless the parameter
We find new, simple cosmological solutions with flat, open, and closed spatial geometries, contrary to the previous wisdom that only the open model is allowed. The metric and the St{u}ckelberg fields are given explicitly, showing nontrivial configura