ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark matter scenarios with multiple spin-2 fields

109   0   0.0 ( 0 )
 نشر من قبل Angnis Schmidt-May
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study ghost-free multimetric theories for $(N+1)$ tensor fields with a coupling to matter and maximal global symmetry group $S_Ntimes(Z_2)^N$. Their mass spectra contain a massless mode, the graviton, and $N$ massive spin-2 modes. One of the massive modes is distinct by being the heaviest, the remaining $(N-1)$ massive modes are simply identical copies of each other. All relevant physics can therefore be understood from the case $N=2$. Focussing on this case, we compute the full perturbative action up to cubic order and derive several features that hold to all orders in perturbation theory. The lighter massive mode does not couple to matter and neither of the massive modes decay into massless gravitons. We propose the lighter massive particle as a candidate for dark matter and investigate its phenomenology in the parameter region where the matter coupling is dominated by the massless graviton. The relic density of massive spin-2 can originate from a freeze-in mechanism or from gravitational particle production, giving rise to two different dark matter scenarios. The allowed parameter regions are very different from those in scenarios with only one massive spin-2 field and more accessible to experiments.



قيم البحث

اقرأ أيضاً

Little is known about dark matter beyond the fact that it does not interact with the standard model or itself, or else does so incredibly weakly. A natural candidate, given the history of no-go theorems against their interactions, are higher spin fie lds. Here we develop the scenario of higher spin (spin $s>2$) dark matter. We show that the gravitational production of superheavy bosonic higher spin fields during inflation can provide all the dark matter we observe today. We consider the observable signatures, and find a potential characteristic signature of bosonic higher spin dark matter in directional direct detection; we find that there are distinct spin-dependent contributions to the double differential recoil rate, which complement the oscillatory imprint of higher spin fields in the cosmic microwave background. We consider the extension to higher spin fermions and supersymmetric higher spins.
If the graviton is the only high spin particle present during inflation, then the form of the observable tensor three-point function is fixed by de Sitter symmetry at leading order in slow-roll, regardless of the theory, to be a linear combination of two possible shapes. This is because there are only a fixed number of possible on-shell cubic structures through which the graviton can self-interact. If additional massive spin-2 degrees of freedom are present, more cubic interaction structures are possible, including those containing interactions between the new fields and the graviton, and self-interactions of the new fields. We study, in a model-independent way, how these interactions can lead to new shapes for the tensor bispectrum. In general, these shapes cannot be computed analytically, but for the case where the only new field is a partially massless spin-2 field we give simple expressions. It is possible for the contribution from additional spin-2 fields to be larger than the intrinsic Einstein gravity bispectrum and provides a mechanism for enhancing the size of the graviton bispectrum relative to the graviton power spectrum.
Well known scaling laws among the structural properties of the dark and the luminous matter in disc systems are too complex to be arisen by two inert components that just share the same gravitational field. This brings us to critically focus on the 3 0-year-old paradigm, that, resting on a priori knowledge of the nature of Dark Matter (DM), has led us to a restricted number of scenarios, especially favouring the collisionless $Lambda$ Cold Dark Matter one. Motivated by such observational evidence, we propose to resolve the dark matter mystery by following a new Paradigm: the nature of DM must be guessed/derived by deeply analyzing the properties of the dark and luminous mass distribution at galactic scales. The immediate application of this paradigm leads us to propose the existence of a direct interaction between Dark and Standard Model particles, which has finely shaped the inner regions of galaxies.
We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are su fficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbations. The resulting operator expansion is distinguishable from that of other scenarios, such as standard single inflation or DBI inflation. In particular, we re-derive how certain operators can become transiently strongly coupled along the inflaton trajectory, consistent with slow-roll and the validity of the EFT expansion, imprinting features in the primordial power spectrum, and we deduce the relevant cubic operators that imply distinct signatures in the primordial bispectrum which may soon be constrained by observations.
107 - Cesar Gomez , Raul Jimenez 2020
A promising candidate for cold dark matter is primordial black holes (PBH) formed from strong primordial quantum fluctuations. A necessary condition for the formation of PBHs is a change of sign in the tilt governing the anomalous scale invariance of the power spectrum from red at large scales into blue at small scales. Non-perturbative information on the dependence of the power spectrum tilt on energy scale can be extracted from the quantum Fisher information measuring the energy dependence of the quantum phases defining the de Sitter vacua. We show that this non-perturbative quantum tilt goes from a red tilted phase, at large scales, into a blue tilted phase at small scales converging to $n_s=2$ in the UV. This allows the formation of PBHs in the range of masses $lesssim 10^{20} gr$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا