ﻻ يوجد ملخص باللغة العربية
We study ghost-free multimetric theories for $(N+1)$ tensor fields with a coupling to matter and maximal global symmetry group $S_Ntimes(Z_2)^N$. Their mass spectra contain a massless mode, the graviton, and $N$ massive spin-2 modes. One of the massive modes is distinct by being the heaviest, the remaining $(N-1)$ massive modes are simply identical copies of each other. All relevant physics can therefore be understood from the case $N=2$. Focussing on this case, we compute the full perturbative action up to cubic order and derive several features that hold to all orders in perturbation theory. The lighter massive mode does not couple to matter and neither of the massive modes decay into massless gravitons. We propose the lighter massive particle as a candidate for dark matter and investigate its phenomenology in the parameter region where the matter coupling is dominated by the massless graviton. The relic density of massive spin-2 can originate from a freeze-in mechanism or from gravitational particle production, giving rise to two different dark matter scenarios. The allowed parameter regions are very different from those in scenarios with only one massive spin-2 field and more accessible to experiments.
Little is known about dark matter beyond the fact that it does not interact with the standard model or itself, or else does so incredibly weakly. A natural candidate, given the history of no-go theorems against their interactions, are higher spin fie
If the graviton is the only high spin particle present during inflation, then the form of the observable tensor three-point function is fixed by de Sitter symmetry at leading order in slow-roll, regardless of the theory, to be a linear combination of
Well known scaling laws among the structural properties of the dark and the luminous matter in disc systems are too complex to be arisen by two inert components that just share the same gravitational field. This brings us to critically focus on the 3
We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are su
A promising candidate for cold dark matter is primordial black holes (PBH) formed from strong primordial quantum fluctuations. A necessary condition for the formation of PBHs is a change of sign in the tilt governing the anomalous scale invariance of