ﻻ يوجد ملخص باللغة العربية
We find new, simple cosmological solutions with flat, open, and closed spatial geometries, contrary to the previous wisdom that only the open model is allowed. The metric and the St{u}ckelberg fields are given explicitly, showing nontrivial configurations of the St{u}ckelberg in the usual Friedmann-Lema^{i}tre-Robertson-Walker coordinates. The solutions exhibit self-acceleration, while being free from ghost instabilities. Our solutions can accommodate inhomogeneous dust collapse represented by the Lema^{i}tre-Tolman-Bondi metric as well. Thus, our results can be used not only to describe homogeneous and isotropic cosmology but also to study gravitational collapse in massive gravity.
We have discussed a particular class of exact cosmological solutions of the 4-dimensional low energy string gravity in the string frame. In the vacuum without matter and the 2-form fields, the exact cosmological solutions always give monotonically sh
A phase of massive gravity free from pathologies can be obtained by coupling the metric to an additional spin-two field. We study the gravitational field produced by a static spherically symmetric body, by finding the exact solution that generalizes
Generic massive gravity models in the unitary gauge correspond to a self-gravitating medium with six degrees of freedom. It is widely believed that massive gravity models with six degrees of freedom have an unavoidable ghost-like instability; however
The de Rham-Gabadadze-Tolley massive gravity admits pp-wave backgrounds on which linear fluctuations are shown to undergo time advances for all values of the parameters. The perturbations may propagate in closed time-like curves unless the parameter
We find exact static stringy solutions of Horava-Lifshitz gravity with the projectability condition but imposing the detailed balance condition near the UV fixed point, and propose a method on constraining the possible pattern of flows in Horava-Lifs