ﻻ يوجد ملخص باللغة العربية
Recently introduced equilibrium Wigner functions for spin-one-half particles are used in the semiclassical kinetic equations to study the relation between spin polarization and vorticity. It is found, in particular, that such a framework does not necessarily imply that the thermal-vorticity and spin polarization tensors are equal. Subsequently, a procedure to formulate the hydrodynamic framework for particles with spin-one-half, based on the semiclassical expansion, is outlined.
Newly introduced equilibrium Wigner functions for particles with spin one-half are used in the semi-classical kinetic equations to study a possible relation between thermal vorticity and spin polarization. It is shown that in global equilibrium both
The hot and dense matter generated in heavy-ion collisions contains intricate vortical structure in which the local fluid vorticity can be very large. Such vorticity can polarize the spin of the produced particles. We study the event-by-event generat
A global equilibrium state of a spin polarized fluid that undergoes constant acceleration along the stream lines is described as a solution of recently introduced perfect-fluid hydrodynamic equations with spin 1/2.
A newly proposed framework of perfect-fluid relativistic hydrodynamics for particles with spin 1/2 is briefly reviewed. The hydrodynamic equations follow entirely from the conservation laws for energy, momentum, and angular momentum. The incorporatio
We review studies of vortical motion and the resulting global polarization of $Lambda$ and $bar{Lambda}$ hyperons in heavy-ion collisions, in particular, within 3FD model. 3FD predictions for the global midrapidity polarization in the FAIR-NICA energ