ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic hydrodynamics with spin

127   0   0.0 ( 0 )
 نشر من قبل Wojciech Florkowski
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A newly proposed framework of perfect-fluid relativistic hydrodynamics for particles with spin 1/2 is briefly reviewed. The hydrodynamic equations follow entirely from the conservation laws for energy, momentum, and angular momentum. The incorporation of the angular-momentum conservation requires that the spin polarization tensor is introduced. It plays a role of a Lagrange multiplier conjugated to the spin tensor. The space-time evolution of the spin polarization tensor depends on the specific form chosen for the spin tensor.



قيم البحث

اقرأ أيضاً

Recent progress in the formulation of relativistic hydrodynamics for particles with spin one-half is reviewed. We start with general arguments advising introduction of a tensor spin chemical potential that plays a role of the Lagrange multiplier coup led to the spin angular momentum. Then, we turn to a discussion of spin-dependent distribution functions that have been recently proposed to construct a hydrodynamic framework including spin and serve as a tool in phenomenological studies of hadron polarization. Distribution functions of this type are subsequently used to construct the equilibrium Wigner functions that are employed in the semi-classical kinetic equation. The semi-classical expansion elucidates several aspects of the hydrodynamic approach, in particular, shows the ways in which different possib
We have studied analytically the longitudinally boost-invariant motion of a relativistic dissipative fluid with spin. We have derived the analytic solutions of spin density and spin chemical potential as a function of proper time $tau$ in the presenc e of viscous tensor and the second order relaxation time corrections for spin. Interestingly, analogous to the ordinary particle number density and chemical potential, we find that the spin density and spin chemical potential decay as $simtau^{-1}$ and $simtau^{-1/3}$, respectively. It implies that the initial spin density may not survive at the freezeout hyper-surface. These solutions can serve both to gain insight on the dynamics of spin polarization in relativistic heavy-ion collisions and as testbeds for further numerical codes.
Hydrodynamics is a general theoretical framework for describing the long-time large-distance behaviors of various macroscopic physical systems, with its equations based on conservation laws such as energy-momentum conservation and charge conservation . Recently there has been significant interest in understanding the implications of angular momentum conservation for a corresponding hydrodynamic theory. In this work, we examine the key conceptual issues for such a theory in the relativistic regime where the orbital and spin components get entangled. We derive the equations for relativistic viscous hydrodynamics with angular momentum through Navier-Stokes type of gradient expansion analysis.
Recently advocated expressions for the phase-space dependent spin-1/2 density matrices of particles and antiparticles are analyzed in detail and reduced to the forms linear in the Dirac spin operator. This allows for a natural determination of the sp in polarization vectors of particles and antiparticles by the trace of products of the spin density matrices and the Pauli matrices. We demonstrate that the total spin polarization vector obtained in this way agrees with the Pauli-Lubanski four-vector, constructed from an appropriately chosen spin tensor and boosted to the particle rest frame. We further show that several forms of the spin tensor used in the literature give the same Pauli-Lubanski four-vector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا